The Energy Frontier Vision

Snowmass CSS, Seattle XF AF-EF Session, July 22, 2022

Meenakshi Narain (Brown U.) Laura Reina (FSU) <u>Alessandro Tricoli</u> (BNL)

EF Reports: https://snowmass21.org/energy/start#final_reports

Energy Frontier: explore the TeV energy scale and beyond to answer still open Big Questions and Explore the Unknown

Big Questions

Evolution of early Universe Matter Antimatter Asymmetry Nature of Dark Matter Origin of Neutrino Mass Origin of EW Scale Origin of Flavor Exploring the Unknown

Energy Frontier: explore the TeV energy scale and beyond Using Standard Model and Beyond Standard Model probes

EW		Stror Interac Proper	tion
Gauge	Big Questions		
Bosons	Evolution of early Unive	rse	
Nature of Higgs	Matter Antimatter Asymm Nature of Dark Matte Origin of Neutrino Mas Origin of EW Scale	r	Direct Production of Dark Matter
Top Physics	Origin of Flavor Exploring the Unkno	In	New Particles teractions ymmetries

Energy Frontier: explore the TeV energy scale and beyond Through the breadth and multitude of collider physics signatures

Energy Frontier Machines

Discoveries at the Energy Frontier are enabled by the development of **new accelerators** and **detector instrumentation**.

EF explorations should proceed along **two main complementary directions**:

- Study known phenomena at high energies looking for indirect evidence of BSM physics
 - Need factories of Higgs bosons (and other SM particles)
 - $\circ~$ Need high precision to probe the TeV scale and beyond
 - $\circ \rightarrow$ Need both luminosity and energy
- Search for direct evidence of BSM physics at the energy frontier
 - \circ Need to explore the multi-TeV scale \rightarrow Need energy
 - Need to explore what LHC/HL-LHC may have difficulty exploring \rightarrow Need luminosity

Energy Frontier Machines: energy and precision

New physics can be at low and at high mass scales: Naturalness

would prefer mass scale close to the EW scale, but direct searches of specific models have placed stronger bounds around 1-2 TeV.

Depending on the mass scale of new physics and the type of collider, the primary method for discovery new physics can vary.

We need to use both energy and precision.

Direct and Indirect Limits

Mass Scale

In a simplified picture:

New physics at loop level: $\delta \eta_{SM} \sim 1/16\pi^2 \times g_{BSM}^2$ F^2/M^2

HE: high-energy or multi-TeV collider

What Machine?

Hadrons

- \circ large mass reach \Rightarrow exploration? S/B ~ 10⁻¹⁰ (w/o trigger)
- o S/B ~ 0.1 (w/ trigger)
- o requires multiple detectors
- (w/ optimized design) • only pdf access to \sqrt{s}
- © ⇒ couplings to quarks and gluons

Circular

- o higher luminosity
- o several interaction points
- o precise E-beam measurement (O(0.IMeV) via resonant depolarization)
- \sqrt{s} limited by synchroton radiation

hristophe Grojean

LHeC

o"greener": less power consumption*

 \circ S/B ~ I \Rightarrow measurement?

o limited (direct) mass reach

o easier to upgrade in energy

o easier to polarize beams

large beamsthralung

one IP only

o identifiable final states

(handle to chose the dominant process)

o polarized beams

o ⇒ EW couplings

Leptons

Linear

Added C³ 0

- Gamma-gamma? 0
- Advanced colliders? Ο

Higgs-boson factories (up to 1 TeV c.o.m. energy)

Snowmass 2021: EF Benchmark Scenarios

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$	Start	: Date	Ā
		200 1	e^-/e^+	${ m ab}^{-1}~/{ m IP}$	Const.	Physics	
HL-LHC	pp	14 TeV		3		2027	1
ILC & C^3	ee	$250 {\rm GeV}$	$\pm 80/\pm 30$	2	2028	2038	
		$350 { m GeV}$	$\pm 80/\pm 30$	0.2			$\ \ $
		$500 {\rm GeV}$	$\pm 80/\pm 30$	4			
		$1 { m TeV}$	$\pm 80/\pm 20$	8			E
CLIC	ee	$380 \mathrm{GeV}$	$\pm 80/0$	1	2041	2048	F
CEPC	ee	M_Z		50	2026	2035	
		$2M_W$		3			
		$240 { m GeV}$		10			
		$360 {\rm GeV}$		0.5			
FCC-ee	ee	M_Z		75	2033	2048	11
		$2M_W$		5			μ
		$240 {\rm GeV}$		2.5			
		$2 M_{top}$		0.8			
μ -collider	$\mu\mu$	$125 {\rm GeV}$		0.02			

Multi-TeV colliders (> 1 TeV c.o.m. energy)

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$	Start Date	
		55	$. e^-/e^+$	${ m ab}^{-1}/{ m IP}$	Const.	Physics
HE-LHC	pp	$27 { m TeV}$		15		
FCC-hh	pp	$100 { m TeV}$		30	2063	2074
SppC	$\mathbf{p}\mathbf{p}$	75-125 TeV		10-20		2055
LHeC	ер	$1.3 \mathrm{TeV}$		1		
FCC-eh		$3.5 { m TeV}$		2		
CLIC	ee	$1.5 \mathrm{TeV}$	$\pm 80/0$	2.5	2052	2058
		$3.0 \mathrm{TeV}$	$\pm 80/0$	5		
μ -collider	$\mu\mu$	3 TeV		1	2038	2045
		$10 { m TeV}$		10		

Timelines are taken from the ITF report (AF)

Snowmass Agora on Future Colliders

Series of events jointly organized by AF and EF, hosted by the Future Colliders initiative at Fermilab, to discuss both near and far future collider proposals, in different stages of development, synergistically grouped into five categories:

- e+e- linear colliders (Dec. 15, 2021): <u>https://indico.fnal.gov/event/52161/</u>
- e+e- circular colliders (Jan. 19, 2022) <u>https://indico.fnal.gov/event/52534/</u>
- μ+μ- colliders (Feb. 16, 2022): <u>https://indico.fnal.gov/event/53010/</u>
- circular pp and ep colliders (Mar 16, 2022): <u>https://indico.fnal.gov/event/53473/</u>
- advanced colliders (April 13, 2022): <u>https://indico.fnal.gov/event/53848/</u>

Critical discussions of physics reach, challenges and RD required, synergies with global context and local resources, timeframe, cost projection.

Other specific dedicated meetings can be found on EF/AF Snowmass websites.

Key physics questions and studies of the EF program

Key physics questions of the EF program

Origin of the electroweak scale?

The Higgs discovery has given us a unique handle on BSM physics and any future plan needs to make the most out of it.

- Can we uncover the nature of high-energy (UV) physics from precision Higgs measurements (mass, width, couplings)?
- Can we measure the shape of the Higgs potential?
- Can the Higgs give us insight into flavor and vice versa?
- How can we stress test the SM with top quark?
- What are the implications for Naturalness?
- Can constraints come from phenomena not yet considered or accessible at colliders?

See EW, Top and
 BSM Topical Group
 Reports

Higgs-self coupling reach

collider	Indirect- h	hh	combined
HL-LHC	100-200%	50%	50%
$ILC_{250}/C^{3}-250$	49%	_	49%
$ILC_{500}/C^{3}-550$	38%	20%	20%
$\operatorname{CLIC}_{380}$	50%	—	50%
CLIC_{1500}	49%	36%	29%
$\operatorname{CLIC}_{3000}$	49%	9%	9%
FCC-ee	33%	—	33%
FCC-ee (4 IPs)	24%	—	24%
FCC-hh	-	2.9- $5.5%$	2.9- $5.5%$
$\mu(3~{ m TeV})$	-	15-30%	15-30%
$\mu(10 { m TeV})$	-	4%	4%

Stress Test of the SM

Key physics studies of the EF program

Aim to build a complete program of BSM searches via both model-specific and model independent explorations

- Models connect the high-level unanswered questions in particle physics (dark matter, electroweak naturalness, CP violation, etc) to specific phenomena in a self-consistent way.
 - Allow the comparison of experimental reach between various approaches, e.g. direct searches vs precision.
- Study alternative paradigms with respect to traditional BSM searches (ex: long-lived and feebly-interacting particles).
- We also aim to conduct searches in a more model-independent/agnostic way
- Complementarity between collider searches, cosmic probes (e.g. Dark Matter), neutrino experiments, rare process experiments etc.

See BSM Topical Group Reports

Examples of BSM explorations at colliders

Heavy Boson (Z') model

Composite Higgs models

Complementarity of collider physics

Collider physics complementing observations in astrophysics

Heavy Neutral Leptons

High energy reach of EF collider experiments compared to other experiments

Key physics topics of the EF program

What can we learn of the nature of strong interactions in different regimes?

Fundamental (theory + phenomenology):

- High precision in strong coupling α_s can be reached by each future machine/experiment
- New directions of future high-precision QCD calculations
- Evolution of jets as a function of energy at the EIC and at hadron colliders
- Are jets universal? If not, how do we deal with non-universality in our hadronization models?
- PDFs coming from lattice calculations

TeraZ statistics allows unprecedented precision in α_s and can provide evidence of BSM

Relative $\alpha_{-}(m_{\pi})$ uncertainty

See QCD Topical Group Report

	rectau	$v \in u_s(m_z)$ uncertainty
Method	Current	Near (long-term) future
(1) Lattice	0.7%	$pprox 0.3\% \; (0.1\%)$
(2) $ au$ decays	1.6%	< 1.%
(3) $Q\overline{Q}$ bound states	3.3%	pprox 1.5%
(4) DIS & PDF fits	1.7%	pprox 1%~(0.2%)
(5) e^+e^- jets & evt shapes	2.6%	pprox 1.5%~(<1%)
(6) Electroweak fits	2.3%	$(\approx 0.1\%)$
World average	0.8%	pprox 0.4% (0.1%)

The Energy Frontier vision in a nutshell

It is essential to

- Complete the <u>HL-LHC program</u>,
- Start now a targeted program for <u>detector R&D for Higgs Factories</u>
- Support construction of a Higgs factory
- Ensure the long-term viability of the field by <u>developing a multi-TeV</u> <u>energy frontier facility</u> such as a *muon collider* or a *hadron collider*.

The Energy Frontier vision

- The discovery of the Higgs boson at the LHC, of which we are celebrating the 10th anniversary in 2022, has added one crucial piece of the puzzle to the SM.
- It has completed the SM and at the same time provided a unique portal to explore physics beyond the Standard Model thanks to its intimate connections to the still open big questions of particle physics.
- Discovery new physics will also involve the unknown and we need to explore it going beyond existing frameworks.
- Collider physics allows to explore a uniquely broad range of phenomena and pursue both indirect and direct validations of BSM physics.
- The EF envisions a physics program articulated into immediate-future, intermediate-future, and long-term-future colliders.

EF Vision - The immediate future

The immediate future is the HL-LHC.

• During the next decade it is essential to complete the **highest priority recommendation of the last P5** and to fully realize the scientific potential of the HL-LHC collecting at least 3 ab⁻¹ of data.

• The physics case is very strong:

- It extends the direct search for *new elementary particles*
- It measures the *Higgs-boson couplings* to reach sensitivity to BSM physics in the TeV range
- It puts bounds on the *Higgs-boson self coupling* and give first indications on the Higgs potential
- It measures the EW couplings of the top quark at a level that is sensitive to corrections from BSM physics
- It extends our understanding of *QCD and strong interactions* by improving the precision of the measurements.
- Continued strong US participation is critical to the success of the HL-LHC physics program, in particular for the <u>Phase-2 detector upgrades</u>, the <u>HL-LHC data taking operations and physics</u> <u>analyses</u> based on HL-LHC data sets, <u>including the construction of auxiliary experiments</u> that extend the reach of HL-LHC in kinematic regions uncovered by the detector upgrades
- In addition, the time scales for realizing what comes next requires also an effort to **advance** preparations for the next collider of the intermediate future during this time frame.²⁰

EF Vision - The intermediate future

The intermediate future is an e^+e^- Higgs factory, either based on a linear (ILC, C³, CLIC) or circular collider (FCC-ee, CepC).

- The physics case is compelling and rest on the ability to
 - Measure the *Higgs-boson couplings* to sub-percent level and discern the pattern of *BSM physics*
 - Search for *exotic Higgs decays* and explore the Higgs portal to hidden sectors
 - Measure the EW couplings of the top quark at a level that can clearly reveal corrections from beyond the SM
 - Stress test the consistency of the SM with substantially improvement in precision
 - Perform precision measurements of *QCD to deepen our understanding of QFT* in both perturbative and non-perturbative regimes.
- The various proposed facilities have a strong core of common physics goals: it is important to realize at least one somewhere in the world.
- A timely implementation is important. There is strong US support for initiatives that could be realized on a time scale relevant for early career physicists.
- In addition, investment in a long term robust program of detector and collider R&D focused on both Higgs factory and multi-TeV colliders (hadron collider, muon colliders) is necessary for solving the many outstanding challenges, and the long term viability of collider physics.

EF vision - The long-term future

In the long term EF envision a collider that probes the multi-TeV scale, up or above 10 TeV parton center-of-mass energy (FCC-hh, SppC, Muon Coll.)

- The physics case is outstanding and rests on the potential to:
 - Greatly extend the reach for BSM scenarios motivated by *naturalness*
 - Understand the mechanism of EW symmetry breaking and measure the Higgs potential
 - Shed light on the origin of flavor
 - Conclusively search for *dark-matter candidates* in a broad category of class of models at high masses
 - Explore a broad range of BSM phenomena at the highest foreseeable energy scale
- A 10-TeV **muon collider** (MuC) and 100-TeV **proton-proton collider** (FCC-hh, SppC) directly probe the order 10 TeV energy scale with different strengths that are unparalleled in terms of mass reach, precision, and sensitivity.
- The main limitation is technology readiness. **A vigorous R&D program** into accelerator and detector technologies **will be crucial**.

EF Colliders: Opportunities for the US

- Our vision for EF can only be realized as a **worldwide program** and we need to envision that **future colliders will have to be sited all over the world** to support and empower an international vibrant, inclusive, and diverse scientific community.
- The US community has to continue to work with the international community on detector designs and develop extensive R&D programs.
 - To realize this, the funding agencies (DOE and NSF) should fund a **R&D program** focused on participation of the US community in future collider efforts as partners (as currently US is severely lagging behind).
- The US EF community has expressed renewed interest and ambition to bring back energy-frontier collider physics to the US soil while maintaining its international collaborative partnerships and obligations, for example with CERN.
 - The international community also realizes that a vibrant and concurrent program in the US in energy frontier collider physics is **beneficial for the whole field**, **as it was when Tevatron was operated simultaneously as LEP**.

EF Colliders: Opportunities for the US

- Planning to proceed in multiple parallel prongs may allow us to better adapt to international contingencies and eventually build the next collider sooner. Such a strategy will also help develop a robust long term plan for the global HEP community, with U.S. leadership in EF colliders.
- Attractive opportunities to be considered are:
 - A US-sited linear e⁺e⁻ collider (ILC/C³)
 - Hosting a 10-TeV range Muon Collider
 - Exploring other e⁺e⁻ collider options to fully utilize the Fermilab site
- Bold "new" projects offer the next generation some challenges to rise to and inspire more young people from the US to join HEP and in the long term help with strengthening the vibrancy of the field.

4

More than 40 contribute papers on Muon Coll. studies during Snowmass 21 New C³ proposal gained momentum during Snowmass 21

EF Resources and Timelines

➢ Five year period starting in 2025

- Prioritize HL-LHC physics program, including auxiliary experiments
- Establish a targeted *e+e- Higgs Factory detector R&D* for US participation in a global collider
- Develop an *initial design for a first stage TeV-scale Muon Coll.* in the US (pre-CDR)
- Support critical *detector* R&D *towards* EF multi-TeV colliders

Five year period starting in 2030

- Continue strong support for *HL-LHC program*
- Support *construction of an e+e- Higgs Factory*
- Demonstrate principal risk mitigation and deliver CDR for a first-stage TeV-scale Muon Coll.

After 2035

- Support continuing *HL-LHC physics program* to the conclusion of archival measurements
- Begin and support the *physics program of the Higgs Factories*
- Demonstrate readiness to construct and deliver TDR for a first-stage TeV-scale Muon Coll.
- Ramp up funding support for *detector R&D for EF multi-TeV colliders*
- EF recognizes the need for strong support to the Accelerator Frontier for the above requests.