SNOWMASS-SEATTLE 24 JULY 2022

ARGONNE NATIONAL LABORATORY HIGH ENERGY PHYSICS DIVISION

Argonne: 3500 Staff, 500 Joint Faculty, 500 PD and Students, 800 visiting scientists+6700 users

ARGONNE AND ARGONNE HEP

Materials, Nanoscience

Leadership Computing

Nuclear Physics

Photon Science

AN ENVIRONMENT WITH MANY OPPORTUNITIES FOR SYNERGIES

"ARGONNE High Energy Physics division (HEPD) will carry out cutting edge research in Energy, Intensity and Cosmic Frontiers while becoming a hub of innovation in the utilization of the new developments in computing, detectors and accelerator technologies for HEP science". Argonne HEP Vision Document submitted to DOE-HEP March 2021 HEP Division ~100 members ~40 core staff

Division Main Research Thrusts

Cross-cutting

- Computing
- AI/ML
- QIS

Intensity Frontier

Muon Program

Neutrino Program

Particle Theory

- Beyond the Standard Model
- Precision QCD

Cosmic Frontier

- Cosmic Theory and Computing
- Experimental Cosmology
- CMB and Dark Energy

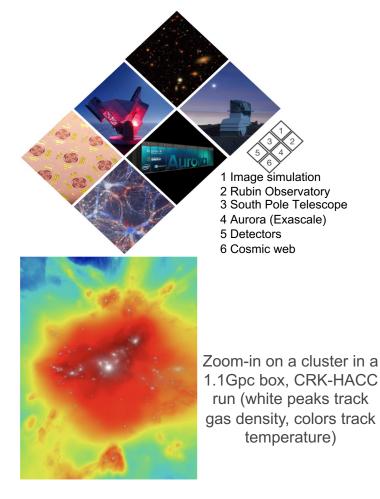
Detector R&D

- Superconducting Detectors
- Novel UV Sensitive Materials

Advanced Accelerator Development

Argonne Wakefield Accelerator (AWA)

Many connection between thrusts: Also, many connections with the larger Argonne Laboratory


BUSE DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Cosmic Frontier

- Program combines theory, computing and experiment
- Leading role in computational cosmology
- Part of Exascale Computing Project to prepare for first exascale supercomputers in the U.S. in 2022/23
- Delivery of world-leading simulations to the DOEsupported cosmology surveys with the Hardware/Hybrid Accelerated Cosmology Code (HACC)
- Leading roles in optical surveys (LSST-DESC)
- Advancing CMB science (SPT-3G, CMB-S4)
 - South Pole Telescope-Operations and Science
 - CMB-S4 Project
 - Detector Fabrication
 - South Pole Site Infrastructure
 - Large-scale superconducting technologies (Synergy with Detector R&D)

Close Collaboration with Computing and Mat. Sci

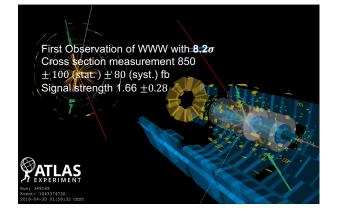
U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC 8000 Sonne (1990) 1946-2021 9

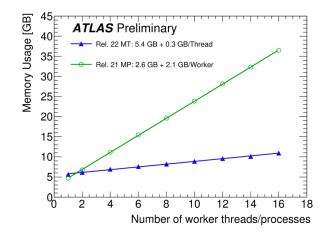
Intensity Frontier

Science, hardware, operations and leadership with muons & neutrinos

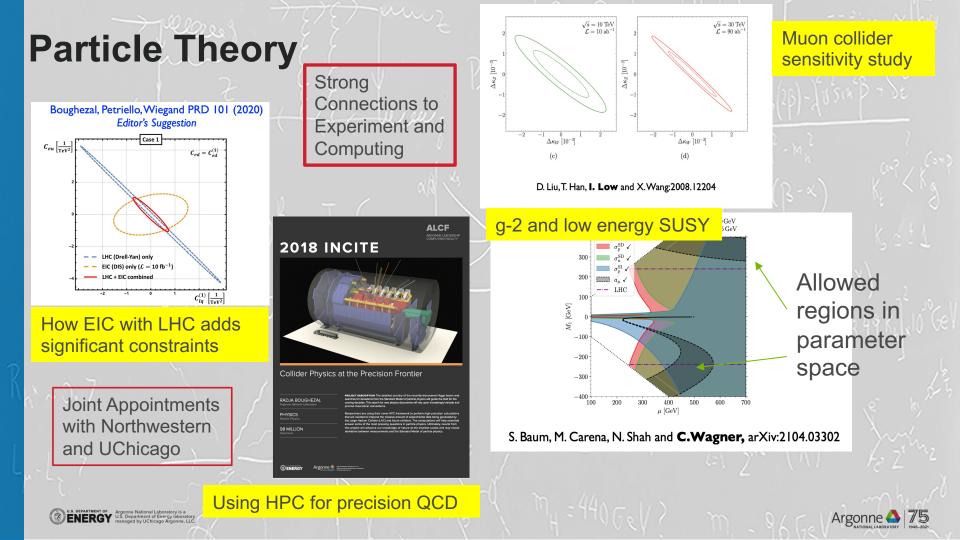
Muon g-2	Mu2e	DUNE	T
Magnetic field analysis Significant roles in operations Leadership roles in collaboration	Background simul. & analysis Cosmic Ray Veto & Field Mapping Leadership roles in Mu2e Project	ProtoDUNE and DUNE analysis & simul.Near and Far Detector rolesLeadership roles in DUNE Project	CPA @ protoDUNE-I Infrastructure for large scale construction

Transpacific cross-calibration of magnetic probes to ~50 ppb. Working with KEK and J-PARC




Energy Frontier (ATLAS)

- BSM searches and precision SM measurements.
- Support for ATLAS detector operations, software and computing.
- Critical upgrades for both Phase-I and the HL-LHC
- AI/ML and High-Performance Computing (HPC)
 Deploying HPC for HEP. Also see Center of Computing Excellence
- Collaboration with universities via ANL ATLAS Center (ATC) University students spend time at Argonne for analysis and hardware work
- R&D activities for future experiments such as the Future Circular Collider (FCC) and International Linear Collider (ILC).



Accelerator Science at Argonne

User Facilities

Advanced Photon Source (BES)

Accelerator Science Division

Argonne Tandem Linac Accelerator System (NP)

Heavy Ion Accelerator (10's of MeV/u)

Argonne Accelerator Institute (AAI): Gateway to Collaboration (both internal and external)

AWA RESEARCH THEMES

- > Advanced Accelerator Concepts (THEME 1)
- > Beam Manipulation (THEME 2)
- > Beam Production (THEME 3)

AWA Recent Highlight

Ultra high-gradient, X-band RF cathode gun.

Demonstrated Gradient 3-4 times state-of-the-art

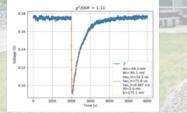
Demonstration of sub-GV/m Accelerating Field in a Photoemission Electron Gun Powered by Nanosecond X-Band Radiofrequency Pulses", **Submitted to PRL** (arXiv: <u>http://arxiv.org/abs/2203.11598</u>)

A Major breakthrough

Potential to decrease emittance

- For LCLS 100 pC@68 nm → 30 nm
- For future HEP linear collider, reduce the site power (and cost) by 30%.
- For FEL, raise photon energy by 50%
 - $hv = 13 \text{ keV} \rightarrow 20 \text{ keV}$

Supported in part by Argonne Accelerator Institute (AAI) as well as DOE HEP



Detector R&D

Superconducting Detectors

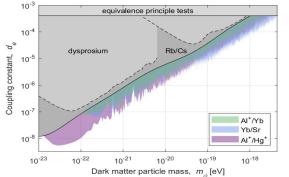
Center for Nanoscale Materials and Argonne Cleanroom

MKID fabricated at Argonne

Trace of a cosmic ray event in an Argonne low-Tc TES device

VUV Sensitive Materials and Detectors

FAPbBr3 perovskite planar devices

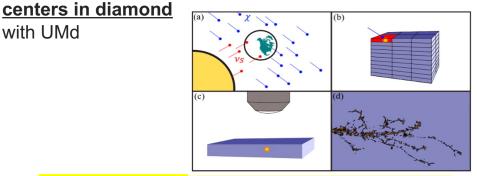

Strong collaborations with Material Science Division Center for Nanoscale Materials

Quantum Information Science

BSM Investigations with Atomic Clocks

Collaboration with NIST Boulder

Constraints derived from optical clock data on the coupling constant d e for ultralight dark matter


Quantum Sensing for Axion Detection

Ultra-sensitive THz single-photon counting KIDs for wideband axion detection

Lattice Field Theories with Bosons

Investigate methods for implementing bosonic field theories on quantum computers

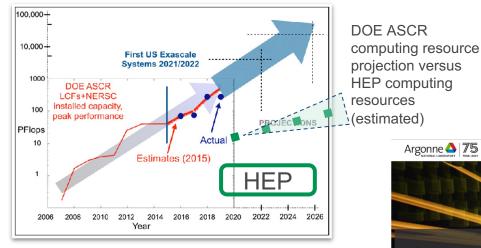
Dark matter detection with nitrogen vacancy

Strong collaboration with

- **Computational Science Division**
- Superconducting Detector/MSD •
- NIST •

with UMd

UMd •



HEP-CCE

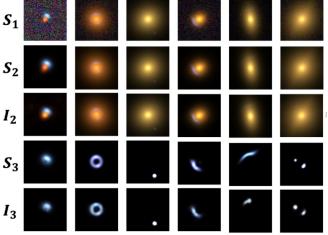
HEP Center for Computational Excellence

New HEP-CCE effort on porting HEP experiment codes to run on DOE supercomputers

Argonne Roles in HEP-CCE

- Staff/postdoc roles in HEP division and Computing directorate for all aspects of the HEP-CCE project, collaborative work with 4 labs (Argonne, BNL, Fermilab, LBNL)
- Provide natural links to relevant Exascale **Computer Project efforts**
- Provide access to prototype and early production hardware to the HEP community

Helping members of the community connect to one another to share or engineer experiment-independent solutions.


Argonne 🐴 🛛 🏾 🏾 🕇

AI/ML: IMPORTANT PART OF ALL FROTIERS

Aurora: Argonne's first Exascale computer. Supports Machine Learning.

Example: Identifying Galaxyscale strong Iensing

S₁: noisy blended simulation, S₂: noiseless blended simulation, I₂: output from denoising module, S₃: noiseless deblended simulation, I₃: output from deblending model Argonne (75)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

HOW WE COLLABORATE OUTSIDE HEP at ANL

Several modes of cross-cutting Examples

Aims of HEP and other Divisions align closely (integration)

- Computational Cosmology
 HEP (Aim: Cosmology Science) ASCR (Aim: Scientific HPC at Scale)
- AWA and the Argonne Accelerator Institute

Collaborating on Specific Research Topics

- HEP Neutrino effort and PHY(NP) Theory group that produce Nuclear models.
- AWA and NP accelerator program collaborating on AI/ML of acc. controls.

Extension of other Division's interests will serve HEP

- MSD-Superconductivity and Magnetism Group: collaborate for Superconducting Detectors.
- MSD-Novel Materials Group: collaborate for VUV sensitive materials.

All Modes of Collaboration are Exploited

Additional Slides

Scientific Staff Demographics (2022)

Wom en

URM

Men