Detector needs at Muon Colliders

Sergo Jindariani (Fermilab)
Snowmass’2022
July 23, 2022

With huge thanks to contributors of the MC Forum, IMCC, MAP, Muon Collider Physics and Detector Group
Muon Collider Timeline

Goal to reach 10+ TeV. Staging at 125 GeV, ~1 TeV and 3 TeV being studied. The focus here is on a ~3 TeV detector.

Technically limited schedule
Beam Induced Background

- Beam background is one of the unique features/challenges of Muon Colliders
- Main Source of Beam Induced Background (BIB) are showers produced by electrons originating in beam muon decays
- The challenge is to separate collision particles from the BIB
Detector

hadronic calorimeter
- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm² cell size;
- 7.5 λ_t.

electromagnetic calorimeter
- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;
- 22 $X_0 + 1 \lambda_t$.

muon detectors
- 7-barrel, 6-endcap RPC layers interleaved in the magnet’s iron yoke;
- 30x30 mm² cell size.

tracking system
- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 μm² pixel Si sensors.
- Inner Tracker:
 - 3 barrel layers and 7+7 endcap disks;
 - 50 μm x 1 mm macro-pixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 μm x 10 mm micro-strip Si sensors.

shielding nozzles
- Tungsten cones + borated polyethylene cladding.

~10 degree acceptance limitation due to the nozzles
BIB properties

Di Benedetto et al., Journal of Instrumentation13(2018)

F. Collamati et al. 2021 JINST 16 P11009

Photons

charged hadrons

electrons/positrons

neutrons

absorbed
For comparison, FCC-hh requirements are $\sim 10^{18}/\text{cm}^2/\text{year}$
Remaining BIB properties

- Low momentum particles
- Partially out-of-time with respect to the bunch crossing
- Often, not pointing to the interaction region
• Occupancy in inner layers approximately five times higher than at the LHC
• Goal: bring occupancy to <1% level. **Pixel size and timing requirements optimized to achieve this goal**
• Other requirements are not unique: **low mass/power, radiation tolerance, low noise**
• **Correlation between layers**
• **Cluster shape**

<table>
<thead>
<tr>
<th>Detector Layer</th>
<th>ITk Hit Density [mm$^{-2}$]</th>
<th>Muon Col. Hit Density [mm$^{-2}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel Layer 0</td>
<td>0.643</td>
<td>3.68</td>
</tr>
<tr>
<td>Pixel Layer 1</td>
<td>0.22</td>
<td>0.51</td>
</tr>
<tr>
<td>Strip Layer 1</td>
<td>0.003</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Calorimeters

- BIB dominated by neutrals: photons (96%) and neutrons (4%).

- Ambient energy about 50 GeV per unit area (~40 GeV in HL-LHC)

 - high granularity
 - precise hit time measurement O(100ps)
 - longitudinal segmentation
 - good energy resolution $10\%/\sqrt{E}$ for photons and $35\%/\sqrt{E}$ for jets or better

- Current Design:
 - ECAL: SiW with 22 X_0, 5x5 mm2 pads
 - HCAL: Iron+Scintillator with 7.5λ
 - Study hybrid DRO options
Muons

- Muon system is the least affected by the BIB
- Current design: gaseous detectors interleaved in an iron yoke
- Targets: 100 micron resolution and 1 ns timing
- High number of hits in the forward disks due to the BIB
 - Some technologies reaching rate limits
 - Some contain gas mixture which has a high Global Warming Potential
Readout/DAQ Considerations

- Key parameter - beam crossings every 10 μs.
- Streaming approach: availability of the full event data → better trigger decision, easier maintenance, simplified design of the detector front-end...

<table>
<thead>
<tr>
<th></th>
<th>Hit</th>
<th>On-detector filtering</th>
<th>Number of Links (20 Gbps)</th>
<th>Data Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracker</td>
<td>32-bit</td>
<td>t-t₀< 1 ns</td>
<td>~3,000</td>
<td>30 Tb/s</td>
</tr>
<tr>
<td>Calorimeter</td>
<td>20-bit</td>
<td>t-t₀< 0.3 ns E>200 KeV</td>
<td>~3,000</td>
<td>30 Tb/s</td>
</tr>
</tbody>
</table>

- Total data rate similar to HLT at HL-LHC ~ **streaming operation likely feasible.**
- Filtering based on event properties or event content
- Bandwidth to disk < 100 Gb/s (plenty for EWK physics)

- High bandwidth and power efficient links, FPGA/GPU acceleration, advanced algorithms
Outlook

• Baseline 3 TeV design established. Many avenues for improvements
• Synergistic with other future collider detector R&D needs
• For 10 TeV the design has to be modified, work is in progress

• Snowmass overview papers:
 • https://snowmass21.org/energy/muon_forum (MuC Forum Report)
 • https://arxiv.org/abs/2203.08033 (accelerator)
 • https://arxiv.org/abs/2203.07224 (detector)
 • https://arxiv.org/abs/2203.07964 (performance)
Tracking Performance

• With some basic hit suppression and track level cuts, get good offline track efficiency and resolutions
• Active work on tracking improvements, including Kalman based algorithm
Take advantage of LHC experience with pile-up suppression techniques

- In progress:
 - Particle-flow reconstruction and particle level pileup removal methods (e.g. Softkiller)
Tracker (2)

- Precision timing is critical for reducing the number of BIB hits. Up to a factor of x3 reduction in the inner layers.
- Correlation between layers (a la CMS pT module) provides additional large reduction.
- Other handles exist.
- Some on-detector filtering may be needed.

Example R&D:
- Monolithic devices
- AC-LGADs
- 3D hybrid pixels
- Intelligent sensors
- Common challenges: services, cooling, low-power ASICS.
BIB as function of Energy

<table>
<thead>
<tr>
<th>beam energy [GeV]</th>
<th>MARS15</th>
<th>MARS15</th>
<th>FLUKA 1500</th>
<th>FLUKA 5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ decay length [m]</td>
<td>3.9 x 10^6</td>
<td>46.7 x 10^5</td>
<td>46.7 x 10^5</td>
<td>93.5 x 10^5</td>
</tr>
<tr>
<td>μ decays/m per beam (for 2x10^{12} μ/bunch)</td>
<td>51.3 x 10^5</td>
<td>4.3 x 10^6</td>
<td>4.3 x 10^5</td>
<td>2.1 x 10^5</td>
</tr>
<tr>
<td>photons/BX (E_γ > 0.1 MeV)</td>
<td>170 x 10^6</td>
<td>86 x 10^6</td>
<td>51 x 10^6</td>
<td>70 x 10^6</td>
</tr>
<tr>
<td>neutrons/BX (E_n > 1 meV)</td>
<td>65 x 10^6</td>
<td>76 x 10^6</td>
<td>110 x 10^6</td>
<td>91 x 10^6</td>
</tr>
<tr>
<td>e^+/BX (E_e > 0.1 MeV)</td>
<td>1.3 x 10^6</td>
<td>0.75 x 10^6</td>
<td>0.86 x 10^6</td>
<td>1.1 x 10^6</td>
</tr>
<tr>
<td>charged hadrons/BX (E_h > 0.1 MeV)</td>
<td>0.011 x 10^6</td>
<td>0.032 x 10^6</td>
<td>0.017 x 10^6</td>
<td>0.020 x 10^6</td>
</tr>
<tr>
<td>muons/BX (E_m > 0.1 MeV)</td>
<td>0.0012 x 10^6</td>
<td>0.0015 x 10^6</td>
<td>0.0031 x 10^6</td>
<td>0.0033 x 10^6</td>
</tr>
</tbody>
</table>

Approximately flat