

Kinetic inductance detectors for **Low-mass Dark Matter** Low-energy neutrinos

Marco Vignati - 23 July 2022 **Snowmass**

×в。

What is the Dark Matter made of?

- primordial black holes?
- µeV/c² eV/c² axion-like waves?
- MeV/c² TeV/c² WIMP-like particles?

Coherent elastic neutrinonucleus scattering (CEvNS)

Vignati - 3

Standard Model (NSI, μ_{ν} , $\sin^2 \theta_W$, ...)

The current 15% precision on $\sigma_{{
m CE} \nu {
m NS}}$ limits its application **Need to reach a few % precision or better**

Thermal phonon detection e.g. CRESST and NUCLEUS experiments

Limitation: individual readout

Pro: record-low energy threshold ~ 20 eV

Future experiments need kg target (~1000 crystals) challenging with this technology

Superconducting resonators - KIDs

AC superconductivity

- Electrons bound into Cooper pairs (no dissipation)
- High quality factors (Q $\sim 10^4 10^6$)
- Inertia from the mass of pairs (*kinetic inductance, L_k*)

Kinetic Inductance Detector (KID):

- Superconductor at T < 200 mK
- Resonant circuit ($f_0 = 1/\sqrt{LC}$)
- Energy release \rightarrow Cooper-pair breaking ($\Delta L_k \rightarrow \Delta f_0$)

Vignati - 6 KIDs Invented by J. Zmuidzinas and his group at Caltech in 2003 for astrophysical applications

superconductor under AC field E_{AC}

Large mass: phonons and multiplexing

Phonon mediation

detect phonons created by nuclear recoils in a silicon dice

Vignati - 7

kg mass: array of Si-dices / KIDs

Large number of targets: BULLKID

1. carving of dices in a thick silicon wafer

2. lithography of multiplexed KID array

- 5.5 mm pitch
- chemical etching

- hosts the KIDs

KID array

- 60 nm aluminum film
- 60 KIDs lithography

Vignati - 8

Istituto Nazionale di Fisica Nucleare

3. assembly

4.5 mm deep grooves

0.5 mm thick surface: holds the structure

Design and assembly

- 3D-printed Cu holder
- Aluminum case

60 detectors in 1

60 dices 0.3 g each 1 readout line

Preliminary results

160

140

120

40

20

Design

- 80 MKIDs coupled to 1 coplanar waveguide feedline
 - KIDs are aluminum
 - $\Delta_{Al} \approx 0.2 \text{ meV}$
 - Feedline is niobium
 - $\Delta_{Nb} \approx 1.5 \text{ meV}$
 - $3.0 \ GHz \leq f_r \leq 3.5 \ GHz$
 - Overcoupled KIDs
 - $Q_c \ll Q_i$
 - $Q_r \ll Q_i$
- High-resistivity silicon substrate
 - 75 mm diameter
 - 1 mm thick

Vignati - 10

3.29675 3.297

@Grenoble: WiFi KIDs

Developed in the framework of **RICOCHET** project (R&D, backup)

KID used with 'wireless' readout \rightarrow maximized phonon sensing .. and other advantages

Si absorber mass = $30 g (36x36x10 mm^3)$

Vignati - 11

J. Goupy et al., APL 115, Issue 22, 223506 (2019)

WiFi KIDs - results

J. Colas et al., LTD19 Proceedings, in press

Vignati - 12

Since the first demonstration of the WiFi scheme, we have tested Al and AlTiAl, different holders, several Q_c couplings, two substrate materials (Si and Quartz) and multi-pixel detectors. IN PROGRESS

PRELIMINARY on multi-pixel: very same pulse (shape/amplitude) is detected on the three pixels. Pulse shape (versus temperature) puzzling \rightarrow not compatible with standard interpretations

Impact

Nuclear recoil detector with:

- ✓ 0.6 kg (Si) / 1.3 kg (Ge) target
- ✓ 200 ÷ 50 eV threshold

Scalable

Quantum circuits

P. Krantz, et al, Applied Physics Reviews 6, (2019) 021318

Vignati - 14

Josephson junction acting as non-linear inductor

> Josephson qubit

 $hv(1 GHz) = 4 \mu eV$

uneven energy levels: isolates the 0-1 levels to create a "bit"

Axion Dark Matter

What is the Dark Matter made of?

- primordial black holes?
- µeV/c² eV/c² axion-like waves?
- MeV/c² TeV/c² WIMP-like particles?

Axions motivated by the strong CP problem

accumulation cavity (ADMX) or dielectric booster (MADMAX)

State of the art of receivers (@ 10 GHz)

Parametric amplifier

 $T_{work} = 4He^{-3}He$ $T_N = hv \sim 0.5 K$ quantum limited

Search for wave dark matter with mass ~ $10 - 100 \ \mu eV$

Vignati - 16

<u>A. V. Dixit, et al, Phys. Rev. Lett. 126, 141302</u>

Thank you for your attention!

Towards the experiment

Vignati - 18

3D-printed Cu stacking prototype

Vignati - 19

Challenges:

- activation up to 5 MCi
- lower threshold than reactors -
- 1% precision in 2 months with a **C**B 10 kg Ge target

C. Bellenghi et. al, EPJC 79 (2019) 727

Bridging communities: ef

Vignati - 20

L. Cardani, et al Nat. Commun. 12 (2021) 2733

Radioactivity interactions:

- \rightarrow Cooper pair breaking \rightarrow dissipation
 - \rightarrow Q lowering \rightarrow Limits coherence time

-30 dB

58/60 resonators responding

