muEDM at PSI: An attractive possibility to extend even further the intensity frontier program

Angela Papa Snowmass, July 22nd/2022

Motivations: Search for EDMs

• The Standard Model of particle physics: A great triumph of the modern physics but not the ultimate theory

• Low energy precision physics: Rare/forbidden decay searches, **symmetry tests**, precision measurements very sensitive tool for unveiling new physics and probing very high energy scale

Matter-Antimatter asymmetry

- Baryogenesis, the creation of more matter over anti-matter, requires additional CP violation (CPV) beyond the SM
- These additional CPV underlying interactions would also result in Electric Dipole Moments
 (EDMs) of fundamental particles at the current experimental sensitivity, well above the SM predictions

muEDM: Definition

Magnetic moment ($\mu = gqh/4mc \sigma$)

Electric moment ($\mathbf{d} = \eta qh/4mc \sigma$)

A discovery of a muon EDM indicates CP violation invoking CPT theorem

muEDM dedicated search: Current status

- EDMs of fundamental particles are intimately connected to the violation of time invariance and the combined symmetry of charge and parity
- The different EDM searches are sensitive to different, unique combinations of underlying CPV sources

Quite poor current direct limit $d_{\mu} < 1.5 \times 10^{-19} ecm$ (CL 90%)

muEDM direct search: Why now?

- Impressive limits on the electron EDM deduced from measurements using atoms or molecules, e.g., thorium oxide molecules $d_{\rm e} < 1.1 \times 10^{-29}$ ecm (CL 90%) lead to $d_{\rm \mu} < 2.3 \times 10^{-27}$ ecm (CL 90%), which is many orders of magnitude better than the direct limit $d_{\rm \mu}$
 - m_{μ} / m_{e} naive rescaling assumes minimal flavor violation (MFV), that is a model dependent assumption
- The muon plays an exceedingly prominent role in unveiling path towards BSM. All substantial evidence found in laboratory experiments for a departure from SM physics involves the muon
 - g-2 experiment at FNAL ($a_{\text{m}} = (g-2)/2 -> 4.2\sigma$)
 - LFU in B-meson decays (3.1 σ , more than 5σ evidence when combining all LFU observable in B-meson decays)
 - deficit in the 1st row unitarity of the CKM matrix may be interpreted as LFU violation (about 4σ)

muEDM direct search: Why now?

- FNAL/JPARC g-2 experiments aims at $d_{\mu} \sim O(10^{-21})~ecm~(via~g-2)$
- Direct muEDM search at PSI in stages:
 - Precursors: $d_{\mu} < 3 \times 10^{-21} ecm$
 - Final: $d_{\mu} < 6 \times 10^{-23} ecm$

Few scalings model-independent predictions

$$\begin{array}{ll} \bullet \ \mathrm{BR}(\ell_i \to \ell_j \gamma) \ \mathbf{vs.} \ (g-2)_{\mu} \\ \\ \mathrm{BR}(\mu \to e \gamma) \ \approx \ 3 \times 10^{-13} \bigg(\frac{\Delta a_{\mu}}{3 \times 10^{-9}} \bigg)^2 \bigg(\frac{\theta_{e\mu}}{10^{-5}} \bigg)^2 \\ \\ \mathrm{BR}(\tau \to \mu \gamma) \ \approx \ 4 \times 10^{-8} \bigg(\frac{\Delta a_{\mu}}{3 \times 10^{-9}} \bigg)^2 \bigg(\frac{\theta_{\ell\tau}}{10^{-2}} \bigg)^2 \end{array}$$

• EDMs assuming "Naive scaling" $d_{\ell_i}/d_{\ell_j} = m_{\ell_i}/m_{\ell_j}$

$$egin{array}{lcl} d_e &\simeq & \left(rac{\Delta a_\mu}{3 imes 10^{-9}}
ight) 10^{-28} \left(rac{\phi_e^{CPV}}{10^{-4}}
ight) \; e \; {
m cm} \; , \ d_\mu &\simeq & \left(rac{\Delta a_\mu}{3 imes 10^{-9}}
ight) 2 imes 10^{-22} \; \phi_\mu^{CPV} \; \; e \; {
m cm} \; . \end{array}$$

- Main messages:
 - ho $\Delta a_{\mu}pprox (3\pm1) imes 10^{-9}$ requires a nearly flavor and CP conserving NP
 - Large effects in the muon EDM $d_{\mu} \sim 10^{-22}~e~{
 m cm}$ are still allowed .

Reminder: g-2 in numbers and experimental approaches

Anomalous magnetic moment (g-2)

$$a_{\mu}$$
= (g-2)/2 = 11 659 208.9 (6.3) x 10⁻¹⁰ (BNL E821 exp) **0.5 ppm**

11 659 182.8 (4.9) x 10⁻¹⁰ (standard model)

$$\Delta a_{\mu} = Exp - SM = 26.1 (8.0) \times 10^{-10}$$
 ~4 σ anomaly

In uniform magnetic field, muon spin rotates ahead of momentum due to g-2=0

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

BNL E821 approach γ =30 (P=3 GeV/c)

J-PARC approach E = 0 at any γ

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

EDM search: From the "frequency" approach...

$$\vec{\omega} = \frac{q}{m} \left[a\vec{B} - \left(a + \frac{1}{1 - \gamma^2} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{q}{m} \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right)$$

 ω_a

- i.e. FNAL: The decay positrons are recorded using calorimeters and straw tube trackers inside the storage ring
- The sensitivity to a muon EDM is limited by the resolution of the vertical amplitude, proportional to ζ , of the oscillation in the tilted precession plane
- i.e. J-PARC: even if the technique is different the sensitivity to an EDM is limited by the resolution of the vertical amplitude

 ω_{e}

...to the frozen-spin technique

$$\vec{\omega} = \frac{q}{m} \left[a\vec{B} - \left(a + \frac{1}{1 - \gamma^2} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{q}{m} \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right)$$

 ω_{a}

 The frozen-spin technique uses an Electric field perpendicular to the moving particle and magnetic field, fulfilling the condition:

$$a\vec{B} = \left(a - \frac{1}{\gamma^2 - 1}\right) \frac{\vec{\beta} \times \vec{E}_f}{c}$$

- Without EDM, ω = 0, the spin follows the momentum vector as for an ideal Dirac spin-1/2 particle, while with an EDM it will result in a precession of the spin with $\omega_{\rm e}$ || E
- The sensitivity to a muon EDM is given by the asymmetry up/down of the positron from the muon decay

EDM: From the "frequency" approach to the frozen-spin technique

Putting everything together, here a summary:

Signal: asymmetry up/down positron tracks

- The sensitivity to a muon EDM is given by the asymmetry up/down of the positron from the muon decay
- Positron are emitted predominantly along the muon spin direction

$$A(t) = \frac{N_{\uparrow}(t) - N_{\downarrow}(t)}{N_{\uparrow}(t) + N_{\downarrow}(t)} = \alpha p \sin\left(\frac{2d_{\mu}}{\hbar}t\right) \approx \alpha p \frac{2d_{\mu}}{\hbar}t$$

The slope gives the sensitivity of the measurement:

$$\sigma(d_{\mu}) = \frac{\hbar \gamma^2 a_{\mu}}{2pE_{\rm f}\sqrt{N} \, \gamma \tau_{\mu} \, \alpha}$$

p := initial polarization

 $E_{\rm f} := \text{Electric field in lab}$

 \sqrt{N} := number of positrons

 $\tau_{\mu} :=$ lifetime of muon

 $\alpha := mean decay asymmetry$

The general experimental idea

- Muons enter the uniform magnetic field
- A radial magnetic field pulse stops them within a weakly focusing field where they are stored
- Radial electric field 'freezes' the spin so that the precession due to the MDM is cancelled

muEDM final at PSI: Frozen spin and longitudinal injection

- μ^+ from Pion-decay \rightarrow high polarization $p \approx 95\%$
- Injection through superconducting channel
- Fast scintillator triggers pulse
- Magnetic pulse stops longitudinal motion of μ^+
- Weakly focusing field for storage
- Thin electrodes provide electric field for frozen spin
- Pixelated detectors for e⁺- tracking

muEDM Precursor at PSI: Proof-of-principle of the frozen spin technique

Develop key technologies and design the final instrument

- Full MC model
- Full FEM model
- Analysis and DAQ
- Nested electrode system with a minimal material budget for the frozen-spin technique
- Pulsed magnetic field to kick muons on a stable orbit
- Injection channel made of a superconducting shield

Perform a first EDM measurement using existing infrastructure and solenoid at PSI

- Develop magnetic-field correction coils and field measurement device
- Develop dedicated positron and muon detectors
- Demonstrate injection
- Demonstrate for the first time electric-field tuning to frozen-spin condition
- First dedicated frozen-spin EDM measurement

First meeting in person in Pisa

- First discussion of tasks and potential interest
- Theoretical seminar (Paride Paradisi)
- Material available at the link: https://indico.psi.ch/event/12975/

muEDM Workshop

Pisa - May 12-13 2022

PROGRAM

Sala seminario 250 - Building C - Physic Department & INFN sez. Pisa

1st Day

Arrivals 9:00 - 12:00 Collaboration meeting 14:00 - 16:30

16:30 Seminar: EDMs, g-2 and cLFV interrelationship Paride Paradisi, University of Padova & INFN

Social Dinner 19:00 - 22:00

2nd Day

Collaboration meeting 9:00 - 18:00

UNIVERSITY OF PISA AND ITALIAN NATIONAL NUCLEAR INSTITUTE

Foreign interested institutes

- (apart PSI, ETH Zurich, INFN):
 - University of Zurich, University of Geneve
 - University of Liverpool, University of London (UCL), University of Manchester, University of Sussex
 - Mainz, Mainz PRiSMA, Universitat Dortmund TU
 - Shanghai University, Tsung-Dao Lee Institute
 - Argonne National Laboratory, Brookhaven National laboratory

A tentative schedule

Simulations
Conception/Design
Prototyping
Acquisition/Assembly
Tests/Measurements

- 1 Full proposal for both phases to CHRISP committee
- 2/a Magnet call for tender / precursor design fix
- Precursor ready for assembly/commissioning
- 3/c Technical design report / frozen spin demonstration
- d First data for precursor muEDM
- Magnet delivered, characterized and accepted
- 5 Successful commissioning / start of data taking
- 6 End of data acquistion for muEDM

Key milestones of the precursor

- Demonstrate the injection
- Demonstrate for the first time electric-field tuning to frozen spin condition
- And then...having detectors to prove it and eventually to perform the first measurement of muEDM with this technique
 - Plastic scintillators coupled to SiPM (Muon tagging, Top/bottom asymmetry and eventually positron tracking - at the first stage to keep the detector complexity at the minimum)
 - PTC feasibility study: muon tracking (to prove that the wanted muon tracks are the selected ones) [not excluded as positron tracker but other options could be more competitive]

Beam-line at PSI for the precursor in piE1

- Surface muon beam at 28 MeV/c
- Muon rate $\sim 3 \times 10^6$
- Test bed for development
- Demonstration of storage and detection of g-2/EDM, e.g. with PSC magnet $\emptyset = 200 \, \text{mm}$
 - the larger the bore the better for instrumentation

Beam measurements at PSI for the precursor in piE1

- Horizontal Emittance:
 - $200 \, \pi \text{mm} \text{ mrad}$
- Vertical Emittance: $270 \pi \text{ mm mrad}$
- Beam rate about $2 \times 10^6 \, \mathrm{s}^{-1}$
- Acceptance phase space:
 - High transmission through channel 6%
 - Injection efficiency about 2%
 - Expected e^+ detection rate 2kHz
- Moderate E field 3kV/cm

The "muEDM" magnet and the injection scheme

- The PSC magnet: Up to 5 T (3 T needed for muEDM)
- · CAD view of the injection SC line, pulsed coils, HV electrodes, Grounds and support structure

Outlook

- A very attractive experiment with strong scientific motivations
- The main challenges: Beam related aspects and B and E fields, systematics and the analysis
- Quite stimulating to face with these new scientific tasks
- Large room for leading and shaping the experiment at different and complementary levels

 ERC (consolidator) just granted. It represents the base on which start to build the rest . . .

Thank you for your attention!

Back-up

Sensitivity: Very preliminary

Gamma factor ($p_{\mu}=125 \mathrm{MeV}/c$)	γ	1.57
Initial polarization	P	0.95
Electric field ($B = 3T$)	$E_{\mathbf{f}}$	2MV/m
e^+ detection rate 25%		60kHz
Mean decay asymmetry	α	0.3
Detections (200days)	N	10 ¹²
$\sigma = \hbar \gamma a_{\mu} / \left(2P E_{\rm f} \sqrt{N} \tau_{\mu} \alpha \right)$	<	6×10^{-23} ecm

DC muon beams. Future prospects: HiMB

- · Aim: O(10¹⁰ muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam
- Time schedule: **O(2027)**
- Key elements: Slanted Target and optimised beam line (higher capture efficiency and large space acceptance transport channel)

Slanted target: First test on 2019 and since then in operation

- Expect ~30-60 % enhancement
- Measurements successfully done in different experimental areas in fall 2019
- Increased muon yield CONFIRMED!

To be seen: impact of higher thermal stress on long term stability of target wheel

The muCool project at PSI

- Aim: low energy high-brightness muon beam
- · Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm
- Increase in brightness by a factor 10¹⁰ with an efficiency of 10⁻³
- Longitudinal and transverse compression (1st stage + 2nd stage): experimentally proved
- Next Step: Extraction into vacuum

Few numbers

Precision achieved in the studies of magnetic dipole moments

$$egin{array}{lll} \Delta \left(a_e^{ ext{sm}} - a_e^{ ext{exp}}
ight) & \simeq & 10^{-12} \ \Delta \left(a_\mu^{ ext{sm}} - a_\mu^{ ext{exp}}
ight) & \simeq & 10^{-9} \end{array}$$

Sensitivity to new physics scales like the lepton mass squared

$$a_f^{ ext{NP}} \sim rac{m_f^2}{\Lambda^2}$$

Muon is a more sensitive probe (but electron is becoming relevant...)

$$rac{\Lambda_{\mu}}{\Lambda_{e}} \sim rac{m_{\mu}}{m_{e}} \sqrt{rac{\Delta a_{e}}{\Delta a_{\mu}}} \sim 6$$

A glimpse: g-2 experiments and EDM

$$\mu = (1 + a_{\mu}) \frac{e\hbar}{2m} \quad a_{\mu} = \frac{g_{\mu} - 2}{2}$$

- Dirac's relativistic theory predicted muon magnetic moment "g" = 2
- Experiment suggested that g-factor differs from the expected value of 2
- Standard Model prediction: a(SM) = a(QED) + a(Had) + a (Weak) + a (NP)
- BNL E821 result: 3.3σ deviation from SM prediction
- FNAL First Result: April 2021 [using RUN1 with statistics similar to BNL statistics]
- RUN1-3 (already collected): ~ 8x BNL statistics. Aiming at ~ 20x BNL statistics

Reminder

NP effects are encoded in the effective Lagrangian

$$\mathcal{L} = oldsymbol{e} rac{oldsymbol{m}_{\ell}}{2} \left(ar{\ell}_{R} \sigma_{\mu
u} oldsymbol{A}_{\ell \ell'} \ell'_{L} + ar{\ell}'_{L} \sigma_{\mu
u} oldsymbol{A}_{\ell \ell'}^{\star} \ell_{R}
ight) F^{\mu
u} \qquad \ell, \ell' = oldsymbol{e}, \mu, au,$$

Proof Branching ratios of $\ell \to \ell' \gamma$

$$\frac{\mathrm{BR}(\ell \to \ell' \gamma)}{\mathrm{BR}(\ell \to \ell' \nu_{\ell} \bar{\nu}_{\ell'})} = \frac{48\pi^3 \alpha}{G_F^2} \left(|A_{\ell\ell'}|^2 + |A_{\ell'\ell}|^2 \right).$$

 $ightharpoonup \Delta a_{\ell}$ and leptonic EDMs

$$\Delta a_{\ell} = 2m_{\ell}^2 \operatorname{Re}(A_{\ell\ell}), \qquad \qquad \frac{d_{\ell}}{e} = m_{\ell} \operatorname{Im}(A_{\ell\ell}).$$

"Naive scaling":

$$\Delta a_\ell/\Delta a_{\ell'}=m_\ell^2/m_{\ell'}^2, \qquad d_\ell/d_{\ell'}=m_\ell/m_{\ell'}.$$

Back-up

• LFV operators @ dim-6

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + rac{1}{\Lambda_{\mathsf{LFV}}^2} \mathcal{O}^{\mathsf{dim}-6} + \dots$$
 $\mathcal{O}^{\mathrm{dim}-6}
ightarrow ar{\mu}_R \, \sigma^{\mu
u} \, \mathcal{H} \, e_L \, F_{\mu
u} \, , \, \, \left(ar{\mu}_L \gamma^\mu e_L
ight) \left(ar{f}_L \gamma^\mu f_L
ight) \, , \, \, \left(ar{\mu}_R e_L
ight) \left(ar{f}_R f_L
ight) \, , \, \, f = e, u, d$

- $\ell \to \ell' \gamma$ probe ONLY the dipole-operator (at tree level)
- $\ell_i \to \ell_i \bar{\ell}_k \ell_k$ and $\mu \to e$ in Nuclei probe dipole and 4-fermion operators
- When the dipole-operator is dominant:

$$\mathrm{BR}(\ell_i \to \ell_j \ell_k \bar{\ell}_k) \approx \alpha \times \mathrm{BR}(\ell_i \to \ell_j \gamma)$$

 $\mathrm{CR}(\mu \to e \text{ in N}) \approx \alpha \times \mathrm{BR}(\mu \to e \gamma)$

$$\frac{{
m BR}(\mu o 3e)}{3 imes 10^{-15}} pprox \frac{{
m BR}(\mu o e \gamma)}{5 imes 10^{-13}} pprox \frac{{
m CR}(\mu o e \text{ in N})}{3 imes 10^{-15}}$$

- Ratios like $Br(\mu \to e\gamma)/Br(\tau \to \mu\gamma)$ probe the NP flavor structure
- Ratios like $Br(\mu \to e\gamma)/Br(\mu \to eee)$ probe the NP operator at work

GridPix

Improving Micromegas: GridPix

track of high energetic particle

Could the spatial resolution of single electrons be improved?

Ar:CH₄ 90:10
$$\rightarrow$$
 D_T = 208 μ m/ \sqrt{cm}

$$\rightarrow \sigma = 24 \mu m$$

Ar:iButane 95:5 \rightarrow D_T = 211 μ m/ \sqrt{cm}

$$\rightarrow \sigma = 24 \mu m$$

Smaller pads/pixels could result in better resolution!

At Nikhef the GridPix was invented.

Standard charge collection:

- Pads of several mm²
- Long strips (l~10 cm, pitch ~200 μm)

Instead: Bump bond pads are used as charge collection pads.

GridPix

Timepix

Number of pixels: 256 × 256 pixels

Pixel pitch: $55 \times 55 \ \mu m^2$ Chip dimensions: $1.4 \times 1.4 \ cm^2$

ENC: $\sim 90 e^{-1}$

<u>Limitations:</u> no multi-hit capability, charge and time measurement not possible for one pixel.

Each pixel can be set to one of these

modes: TOT = time over threshold (charge)
Time between hit and shutter end.

