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CF03: Cosmic Probes of Dark Matter

« Cosmological and astrophysical measurements provide the only robust, positive
empirical measurements of dark matter.

» Cosmic probes are unique in that they do not rely on the assumption that dark
matter has interactions with normal matter beyond gravity; thus they are the most
“‘expansive” (and could be the only viable) approach to the dark matter problem.

» Cosmic probes is an emergent field that requires strong synergy among particle
theorists, dynamists, simulators, observers, and experimentalists; need a new
mechanism to support these emerging, collaborative efforts.

« Cosmic probes are highly relevant and complementary to search efforts in CF1,
CF2, CF7 and other frontiers, and there is strong experimental synergy with
cosmological probes of dark matter, dark energy, and inflation (CF4, CF5, CF6)
and theory frontier



Halo
Measurements

e

>Low Density Coges
? INTERFERENCE -
INDUCED DENSITY

>

> &

7 Cusey PROFILES
Y MANY SUBHALOS

2203.07354

)
2

> CoReD OR Cusey
PROFILES

> VARIABLE CENTRAL
DeNsiTIES

SPIRAL
GALARY

Extreme
Environments



https://arxiv.org/abs/2203.07354




B\

Particle-Like

\

Wave-Like

/

)

Cosmic Probes

- TN

it

Accelerator Searches ’
| | | | | | |




Interaction Strength

Dark Matter Mass
zeV aeV feV peV neV peV meV eV keV MeV GeV TeV PeV 30M,

Ult'ght Self-‘ting

Co ct
o ts




Interaction Strength

Dark Matter Mass

zeV aeV feV peV neV peV meV eV keV MeV GeV TeV Pev 30M,

e
L Compact
itraetiaivt ﬁﬁlf‘l‘ﬁllnﬂ
Axion-

—  Particle-Like

Cosmic Probes

Delve Deep, Search Wide!

Wave-Like




Letters of Interest and Solicited White Papers

e CFO03 received ~75 Letters of Interest from the community.

e Through a series of discussions (including the Community Planning Meeting),
we arrived at a list of 5 solicited white papers with designated facilitators. All
have been submitted.

e CFO03 has received 5 additional white papers (to date). Other relevant white
papers include ~15 white papers submitted to other CF topical groups and
other frontiers.

THANK YOU
white paper facilitators and authors!
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3.1 Three Core HEP Community Priorities

e Current /near-future HEP cosmology experiments have direct sensitivity to dark matter particle physics
[1-3]. Cosmological studies of dark matter should be supported as a key component of
the HEP Cosmic Frontier program due to their unique ability to probe dark matter
microphysics and link the results of terrestrial dark matter experiments to cosmological
measurements.

The construction of future cosmology experiments is critical for expanding our under-
standing of dark matter physics. Proposed facilities across the electromagnetic spectrum, as well
as gravitational waves, can provide sensitivity to dark matter physics, as well as physics of dark energy
and the early universe [4]. HEP involvement will be essential in constructing and operating these
facilities, and optimizing their sensitivity to dark matter physics should be a core consideration in
their design.

Cosmic probes provide robust sensitivity to the microphysical properties of dark matter due to enor-
mous progress in theoretical modeling, numerical simulations, and astrophysical data. Theory, simu-
lation, observation, and experiment must be supported together to maximize the efficacy
of cosmic probes of dark matter physics.




3.1 Five Major Science Opportunities

1. The Standard Model of particle physics and cosmology can be tested at unprecedented levels of precision
by measuring the cosmic distribution of dark matter. These measurements span an enormous range of
scales from the observable universe to sub-stellar-mass systems (e.g., the matter power spectrum, the
mass spectrum of dark matter halos, dark matter halo density profiles, and abundances of compact
objects) (7, 12, 13]. The fundamental particle properties of dark matter (e.g., particle mass, production
mechanism, and interaction cross sections) can lead to observable changes in the distribution of dark
matter. Measurements of the distribution of dark matter should be supported as a key
element of the HEP Cosmic Frontier program to understand the fundamental nature of
dark matter.

. The ACDM model makes the strong, testable prediction that the mass spectrum of dark matter
halos extends below the threshold at which galaxies form [5]. Sub-galactic dark matter halos are
less influenced by baryonie processes making them especially clean probes of fundamental physics of
dark matter. We are on the cusp of detecting dark matter halos that are devoid of baryons through
several cosmie probes (e.g., strong lensing, the dynamics of stars around the Milky Way). The HEP
community should pursue the detection of dark matter halos below the threshold of galaxy
formation as an exceptional test of fundamental dark matter properties.




3.1 Five Major Science Opportunities

3. Extreme astrophysical environments provide unique opportunities to explore dark matter couplings to
the Standard Model that are inaccessible with terrestrial experiments [8]. Instruments, observa-
tions, and theorists that study extreme astrophysical environments should be supported
as an essential means to constrain the expanding landscape of dark matter models.

4. Numerical simulations of structure formation and baryonic physics play a key role in addressing particle
physics questions about the nature of dark matter. HEP computational resources and expertise

can be combined with astrophysical simulation expertise to rapidly advance numerical
simulations of dark matter physics.

. The interdisciplinary nature of dark matter research calls for interagency mechanisms

that support a comprehensive pursuit of scientific opportunities cutting across traditional
disciplinary boundaries.




3.2 - CF3 in a single figure...
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3.3 Dark Matter Halos 2203.07354
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3.3 Complementarity with CF1 (Halos)
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3.4 Numerical Simulations
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Numerical simulations are critically important to
interpret cosmic observations in the context of
specific dark matter particle models.

Need #1: Collaboration between simulators and particle theorists

Need #3: Hydrodynamic simulations for observational targets
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2203.07049 particle physics and observations.
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[Submitted on 20 May 2022 (v1), last revised 6 Jul 2022 (this version, v2)]

Tidal disruption of solitons in self-interacting ultralight axion dark matter
Noah Glennon, Ethan O. Nadler, Nathan Musoke, Arka Banerjee, Chanda Prescod-Weinstein, Risa H. Wechsler

Ultralight axions (ULAs) are promising dark matter candidates that can have a distinct impact on the formation and evolution of structure on
nonlinear scales relative to the cold, collisionless dark matter (CDM) paradigm. However, most studies of structure formation in ULA models do not
include the effects of self-interactions, which are expected to arise generically. Here, we study how the tidal evolution of solitons is affected by ULA
self-interaction strength and sign. Specifically, using the pseudospectral solver UltraDark.jl, we simulate the tidal disruption of self-interacting
solitonic cores as they orbit a 10! M Navarro-Frenk-White CDM host halo potential for a range of orbital parameters, assuming a fiducial ULA
particle mass of 10~*2eV. We find that repulsive (attractive) self-interactions significantly accelerate (decelerate) soliton tidal disruption. We also
identify a degeneracy between the self-interaction strength and soliton mass that determines the efficiency of tidal disruption, such that disruption
timescales are affected at the ~ 50% level for variations in the dimensionless ULA self-coupling from A = —107? to A = 1072.

Comments: 15 pages, 10 figures. This paper was made to be as similar to the PRD version as possible
Subjects: Cosmology and Nongalactic Astrophysics (astro-ph.CO); High Energy Physics - Phenomenology (hep-ph)
Cite as: arXiv:2205.10336 [astro-ph.CO]

(or arXiv:2205.10336v2 [astro-ph.CO] for this version)

https://doi.org/10.48550/arXiv.2205.10336 @



3.5 Primordial Black Holes and the
Early Universe

Primordial black holes
may be our earliest
window into the birth of
the universe and
energies between the
QCD phase transition
and the Planck scale.

Even if PBHs are a
small fraction of dark
matter, their discovery
would have far-reaching
implications
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3.6 Extreme Environments in one Figure...
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3.6 Complementarity with CF2 (Extreme Environments)
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3.7 Facilities for Cosmic Probes of Dark Matter

Current/Near-Future Facilities Future Facilities
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https://arxiv.org/abs/2203.06200

3.7 Facilities for Cosmic Probes of Dark Matter

e How do we best address the need from the facilities community?

Dark matter physics associated with current and near-future facilities, such as DESI, Rubin, and CMB-34,
is extremely rich. Dark matter science should be supported within these projects on intermediate scales
in parallel to studies of dark energy and inflation. Such a program will fully leverage the unprecedented
capabilities of these facilities. On large scales, the construction of future cosmology experiments is critical

for expanding our understanding of dark matter physics. HEP involvement will be essential for the design
and construction of these facilities, and dark matter physics should be a core component of their scientific
mission.

e \We need to highlight the relevance of technology and expertise of the
HEP community.

e \We need provide more specific goals and quantitative estimates; these
exist for some, but not all facilities.



3.8 Tools for Comic Probes of Dark Matter Physics

e Collaborative Infrastructure - Support through existing HEP Projects
(DESI, Rubin, CMB-S4)

e New Support Mechanisms - Cross-disciplinary support initiatives
(future DMNI, cross-disciplinary funding)

e Artificial Intelligence/Machine Learning - Large complex data sets;
need new tools to analyze them.

e Cosmology Data Preservation - Large legacy data sets; want to re-
analyze for decades to come



3.9 Roadmap to New Physics
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Table1
Summary of Scenarios

Snowmass 2013 did not
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from the 2014 P5 — [
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https://www.usparticlephysics.org/wp-content/uploads/2018/03/FINAL_P5_Report_053014.pdf

Summary

Dark matter should be one of (if not “the one”) highest priority across Snowmass.
Current/near-future cosmic surveys provide direct access to dark matter model space.

Future cosmic survey facilities provide discovery potential across a wide range of
fundamental physics (dark energy, dark matter, inflation, early universe physics).

New mechanisms for cross-disciplinary support are needed to assemble the expertise
needed to make concrete advances in cosmic probes of dark matter.

Cosmic probes of dark matter complement terrestrial searches (i.e., probe similar models
in different parts of parameter space), inform terrestrial searches (i.e., tell us where the
dark matter is and how it moves), and probe unique parameter space (i.e., self-
interactions and gravitational interactions).



