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Cosmological Observations

CMB

G. Pimentel



Cosmic Microwave Background (CMB)

1Ization

+ polar

Cf. electron-positron collider.

Planck (2018)



Large-Scale Structure (LSS)

Galaxy Clustering Weak Gravitational Lensing

+ CMB secondaries,
Lyman-a forest,

galaxy clusters,
21lcm, ...

Cf. proton-proton collider.
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Recent Examples

Free-Streaming Neutrinos in the CMB & LSS
Dark Radiation and Axion-Like Particles
Cosmological Parameters from LSS
Primordial Non-Gaussianity from LSS

Primordial Features in LSS



Free-Streaming Neutrinos

41% of the radiation density in the universe:
— Leave gravitational imprint,

— Can detect their energy density.
In the Standard Model: free-streaming since T' ~ 1 MeV.

Free-streaming neutrinos overtake the photons and pull them
ahead of the sound horizon.

New theoretical insights & modeling + precise observational data:

— Extraction from CMB (2015) and LSS (2018) data!

— Constraints on neutrino interactions.



Dark Radiation and Axion-Like Particles

e Cosmological surveys can precisely measure the radiation density.

* Neutrino energy density theoretically computed to high precision.
— Deviation means physics beyond the Standard Model!

— No deviation implies constraints on potential new physics, e.g.
— on couplings of new particles to the Standard Model,
— on changes to thermal history, e.g. phase transitions,



SM Couplings of Axion-Like Particles
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* Calculations for charm and bottom couplings are impacted by the QCD phase transition. Here: conservative estimate, might be larger.



Cosmological Parameters from LSS

e Theoretical development of the effective field theory of large-scale
structure (EFTofLSS).

* Powerful description of structure formation into the mildly

nonlinear regime.
— Remember: N, des ~ V3

max

— Analyses can extract more information from same survey.

» Additional theoretical advances for computational tractability.
— Cosmological analyses of the full power spectrum (2019),
— Independent of the CMB.
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Primordial Features from LSS

* Primordial features:

— Observational signature of departure from scale invariance,
i.e. new inflationary energy scale(s) and phenomena.

— Oscillatory imprint in CMB and LSS observations.

* Theoretical insights allow separation from late-time effects.
— Use full statistical power of LSS surveys (2019).

0.06




Primordial Non-Gaussianity from LSS

* Primordial non-Gaussianity:

— Observational signature of inflationary dynamics,
e.g. number of light fields and inflaton self-interactions.

e Non-Gaussianity also induced by gravitational evolution in the
late universe.

 EFTofLSS allows first constraint on equilateral primordial non-
Gaussianity, similar to WMAP (2022).

* A lot of ongoing theoretical work, including map-based analyses,
simulation-based inference, machine learning, ...



Conclusions

* Theory impacts observational cosmology in many ways:
— Fundamental insights,
— Motivating targets,
— Understanding observables,
— Crucial modeling,
— Demonstrating analyses,

* Ongoing dialog between theory and observations is required to
untangle the laws of physics of our universe.

— Let’'s map the universe and find out!
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