Opportunities at the Intersection of Theory and Observations

Benjamin Wallisch

Institute for Advanced Study & UC San Diego

For references: CF5/TF09 reports and white papers

TF/CF Parallel Session, Snowmass Community Summer Study, Seattle, July 2022

PDG, LBNI

PDG, LBNI

Cosmological Observations

Cosmic Microwave Background (CMB)

Cf. electron-positron collider.

Planck (2018)

Large-Scale Structure (LSS)

Weak Gravitational Lensing

+ CMB secondaries, Lyman-α forest, galaxy clusters, 21cm, ...

Cf. proton-proton collider.

Line Intensity Mapping

Galaxy Surveys

CMB Surveys

Recent Examples

- Free-Streaming Neutrinos in the CMB & LSS
- Dark Radiation and Axion-Like Particles
- Cosmological Parameters from LSS
- Primordial Non-Gaussianity from LSS
- Primordial Features in LSS

• ...

Free-Streaming Neutrinos

- 41% of the radiation density in the universe:
 - \rightarrow Leave gravitational imprint,
 - \rightarrow Can detect their energy density.
- In the Standard Model: free-streaming since $T \sim 1 \,\mathrm{MeV}$.
- Free-streaming neutrinos overtake the photons and pull them ahead of the sound horizon.
- New theoretical insights & modeling + precise observational data:

 \rightarrow Extraction from CMB (2015) and LSS (2018) data!

 \rightarrow Constraints on neutrino interactions.

Dark Radiation and Axion-Like Particles

- Cosmological surveys can precisely measure the radiation density.
- Neutrino energy density theoretically computed to high precision.
 - Deviation means physics beyond the Standard Model!
 - No deviation implies constraints on potential new physics, e.g. \rightarrow on couplings of new particles to the Standard Model, \rightarrow on changes to thermal history, e.g. phase transitions, \rightarrow ...

SM Couplings of Axion-Like Particles

* Calculations for charm and bottom couplings are impacted by the QCD phase transition. Here: conservative estimate, might be larger.

Cosmological Parameters from LSS

- Theoretical development of the effective field theory of large-scale structure (EFTofLSS).
- Powerful description of structure formation into the mildly nonlinear regime.

$$ightarrow$$
 Remember: $N_{
m modes} \sim V k_{
m max}^3$

 \rightarrow Analyses can extract more information from same survey.

- Additional theoretical advances for computational tractability.
 - ightarrow Cosmological analyses of the full power spectrum (2019),
 - \rightarrow Independent of the CMB.

Inflation and Fundamental Physics

Primordial Features from LSS

- Primordial features:
 - Observational signature of departure from scale invariance,
 i.e. new inflationary energy scale(s) and phenomena.
 - Oscillatory imprint in CMB and LSS observations.
- Theoretical insights allow separation from late-time effects.
 - \rightarrow Use full statistical power of LSS surveys (2019).

Primordial Non-Gaussianity from LSS

- Primordial non-Gaussianity:
 - Observational signature of inflationary dynamics,
 e.g. number of light fields and inflaton self-interactions.
- Non-Gaussianity also induced by gravitational evolution in the late universe.
- EFTofLSS allows first constraint on equilateral primordial non-Gaussianity, similar to WMAP (2022).
- A lot of ongoing theoretical work, including map-based analyses, simulation-based inference, machine learning, ...

Conclusions

- Theory impacts observational cosmology in many ways:
 - Fundamental insights,
 - Motivating targets,
 - Understanding observables,
 - Crucial modeling,

. . .

- Demonstrating analyses,

• Ongoing dialog between theory and observations is required to untangle the laws of physics of our universe.

 \rightarrow Let's map the universe and find out!

Simulations/Modeling/Analysis

Benjamin Wallisch bwallisch@ias.edu