Science Highlights

THEORY FRONTIER

COMMUNITY PLANNING 2021

Nathaniel Craig (UCSB)
Csaba Csaki (Cornell)
Aida El-Khadra (UIUC)

captions go here
lays the foundations for future experiments
connects to gravity, cosmology, astrophysics nuclear physics, condensed matter, AMO, computer science, statistics, data science, mathematics
advances our understanding of Nature in regimes that experiment cannot (yet) reach

Fundamental Theory A interconnected scientific ecosystem closely aligned with experiment

Computational Theory
central to the motivation, analysis, and interpretation of experiments

Phenomenology

responsive:

propose new directions based on data propose/guide new experiments develop new analysis tools
incorporates new perspectives (QI, ML) and computational technologies to extend the boundaries of our knowledge

Fundamental Theory

TF01
 Holography (AdS/CFT) + QI (entanglement entropy)
 Quantum Error Correction

TF04

Leverage advanced QFT methods for state-of-the-art gravitational wave predictions

TF02
new EFTS for DM, GWs, CM; SMEFT new neplications

smeft	$\hat{\sharp}_{\wedge}$	$\sqrt{208}$	
$\begin{aligned} & \text { Fermi's theory } \\ & +5 \text {-flavor } \mathrm{QCD} \end{aligned}$			fundamental principles
4 -favor QCD	${ }^{m}$		(symmetries, naturalness,
3.favor QCD			unitarity, analyticity, causality, ...)
Non-pert. EFTs with NR nucleons			num new tools
NR nucleons			P. Draper + K. Zh

TF03

Bootstrap = the use of symmetry and other principles (unitarity/positivity, crossing) to constrain or determine a physical quantity.

CFT 4-pt fn = time
$=$

bootstrapping
quantum gravity

Phenomenology

TF05/06 precision SM theory for flavor physics (EFT + loops + lattice QCD)
IIII BSM constraints .. or discovery

TF07 new observables, multi-point correlators leveraging
ML/AI, computational theory, connections to fundamental theory

> jet substructure

TF08

new paradigms: hidden sectors, new symmetries, split spectra, neutral naturalness, ...
IIII new search strategies and constraints
cosmic selection of EW vacuum

Phenomenology

TF09/10
pursue new physics discoveries with new technologies for new experiments
A. Berlin

TF11

ν new mass scale: explore the space of BSM theories
ν cross sections across all energy scales in the SM and beyond:
broad program combining nuclear many body theory + EFT + lattice QCD + pQCD + generators

TF09 Fundamental theory (bootstrap, EFT, ...) + computational theory + cosmology + observation

Computational Theory

TF05

Lattice QCD: expanding the scope from precision to complexity

x-dependent PDFs

nucleon MEs (gA, nEDM,...)

multi-nucleon matrix elements

- Lattice calculations as a "numerical laboratory" push the boundaries of our knowledge of stronglycoupled physics - e.g. holography tests in $\mathrm{N}=4 \mathrm{SYM}$
Z. Davoudi + A. Kronfeld+ E. Neil + M. Wagman

HMC

GAN-overrelaxation
development of new ML methods for gauge theory generation
applications to observables

Topical Group	Topical Group Conveners				
TF01	String theory, quantum gravity, black holes	Daniel Harlow	Shamit Kachru	Juan Maldacena	
TF02	Effective field theory techniques	Patrick Draper	Ira Rothstein		
TF03	CFT and formal QFT	David Poland	Leonardo Rastelli		
TF04	Scattering amplitudes	Zvi Bern	Jaroslav Trnka		
TF05	Lattice gauge theory	Zohreh Davoudi	Taku Izubuchi	Ethan Neil	
TF06	Theory techniques for precision physics	Radja Boughezal	Zoltan Ligeti		
TF07	Collider phenomenology	Fabio Maltoni	Shufang Su	Jesse Thaler	
TF08	BSM model building	Patrick Fox	Graham Kribs	Hitoshi Murayama	
TF09	Astro-particle physics and cosmology	Dan Green	Joshua Ruderman	Ben Safdi	Jessie Shelton
TF10	Quantum information science	Simon Catterall	Roni Harnik	Veronika Hubeny	
TF11	Theory of Neutrino Physics	André de Gouvêa	Irina Mocioiu	Saori Pastore	Louis Strigari

138 Snowmass White Papers submitted to TF!

Thank you!

Early Career

Rotating
\(\left.\begin{array}{l|l|l|l}Liaisons \& Accelerator

Lian-Tao Wang (U Chicago) \& Community Engagement \& Cevin Walker (Dartmouth)\end{array}\right)\)| Computational |
| :--- |
| Steven Gottlieb (Indiana U) |

