

Beams, Accelerator R&D and Future Facilities: Accelerator Frontier Vision

Community Summer Study – Seattle, July 21, 2022

Stephen Gourlay, Tor Raubenheimer, and Vladimir Shiltsev

(Snowmass'21 AF Conveners)

Snowmass 2021

Content (Plan)

- On Accelerators (8 slides)
- II. Progress since 2014 P5 (3 slides):
- III. Snowmass'21 AF View of HEP (23 slides):
 - Accelerators for Neutrinos
 - Accelerators for Rare Processes
 - Colliders

IV. Accelerator "Messages/Asks" (10 slides):

- Ongoing efforts
- Goals by next Snowmass/P5 : Facilities
- Next Decade: Accelerator R&D Priorities
- P5 and Accelerator R&D

90 Years of Accelerators

Since Cockroft & Walton, Lawrence, van der Graaf:

 4 Nobel Prizes + led to 1/3 of all Physics Nobels and more

140 used in research now:

- with 4500 experts+15000 staff
- serving ~80,000 users (Cond. \$\mathcal{S}\$
 Matter, HEP, bio, NP, etc)

Pushing the envelope:

 Energy, performance(power, luminosity, brilliance, species), cost, complexity, size, R&D,...

Colliders: Livingston Plot

Collider Luminosities

[V. Shiltsev and F. Zimmermann, Rev. Mod. Phys. 93, 015006 (2021); V. Shiltsev, Phys. Usp. 55, 965 (2012)]

Revolution in Light Sources /X-ray Sources

Accelerators: Not only HEP

approx. total cost of <u>accelerator construction</u> projects/decade

07/22/2022

2010

2020

2030

2040

Fermilab

Cost is set by the scale (energy, length, power) and technology

 Accelerator technology (magnets NC and SC, RF and SCRF)

Civil construction technology

~35±15 %

Power delivery,
 transformation and
 distribution technology

Accelerators Timeline X+Y+Z

Bigger size and cost → longer:

- Pre-project R&D X years
 - Depends on novelty
- Construction project Y years
 - Limited annual peak M\$/year
 - "Oide law": need ~1 expert to spend (intelligently) 1 M\$/year
 - NB: <4500 experts worldwide
- Commissioning Z years
 - Depends on complexity
 - Past large colliders:

5 yrs +4 (SLC, DAFNE, BEPCII)
-3 (PEP-II, Tevatron-I, LEP-II)

Part II

Progress since 2014 P5

Previous Snowmass/P5 (2013/14)

Major accelerator-related recommendations:

Engage in the ILC in Japan, contribute if it goes

Build >1 MW proton source PIP-II for v LBNF/DUNE

Provide beams for g-2 and mu2e experiments

Reassess Muon Accelerator Program and MICE

done, in process

• A follow-up 2015 Accelerator R&D subpanel recommended several thrusts:

Beam Physics (incl. IOTA and PIP-III)

Sources and Targets (incl. multi-MMM)

Sources and Targets (incl. multi-MW)

RF (high-Q, high-G, low cost)

Magnets and materials (16 T, low cost)

Advanced acceleration (towards wakefield colliders)

<mark>in process</mark>

process

process

process

in process

Building for Discovery

Some Examples – Facilities/Programs

(under construction) AUP LHC Nb₃Sn IR quads for HL-LHC

CD-3 project be ready LS3

FNAL

BNL

LBNL

(construction started) PIP-II 800 MeV proton SRF linac

@FNAL

Goal: 1.2MW for LBNF/DUNE

Beam to Booster in 2029

30% Int'l contrib.

(completed) ILC Program

1st 1.3GHz full CM with beam

Fermilab

FAST facility

ILC type beam

31.5MeV/m

255 MeV/CM

=0622Q25pecs

(ongoing) muon beams for g-2 and mu2e experiments

FNAL

8 GeV p's \rightarrow target $\rightarrow \mu$'s Run-I (2021) major muon g-2 discovery

Some Examples – Accelerator R&D

Record 14.5T Dipole (at FNAL, part of the US MDP)

Nb3Sn conductor

Stress control

MAP/MICE: Ionization cooling of muons (140 MeV/c, RAL, UK)

FACET-II User facility (SLAC)

BELLA: LWFA records (LBNL)

Unique beam 10 GeV 1 nC 1x1x1 μm

8 GeV/0.2m staging p.o.p 0.1+0.1 GeV

07/22/2022

IOTA Ring/Optical Stochastic cooling *e*- (100 MeV, FNAL)

soon – experiments with p's

THz bandwidth

Snowmass 2021

Part III

Snowmass'21 Accelerator Frontier View

AF Topical Groups provided input to community/P5 to evaluate options on <u>future facilities</u>:

- Accelerators for Neutrinos
- II. Accelerators for Rare Processes
- III. Colliders

I: Accelerators for v's: 2020s - PIP-II constr./commiss.

Multi-MW v Beams for DUNE

LBNF/DUNE Project – Phase I:

- By 2032: 1.2 MW proton beam (120 GeV, MI) on target + near v-detector + 20 kton LAr v-detector in Lead, SD
- Expected rate of "physics" outcome up to ~3 σ in δ_{CP} , in the first 6 years (also Δm^2_{32} , $\sin^2\theta_{23}$, $\sin^22\theta_{13}$)
- To get to ~5σ will take too long, plus competitor experiment Hyper-K in Japan (30 GeV J-PARC p beam)

Proposed LBNF/DUNE Phase II:

- By 2038: \sim 2.4 MW proton beam + new near ν -detector + extra 20 kton Lar ν -detector
- Expected to get to $\sim 5\sigma$ in δ_{CP} in the following 6 years

2.4 MW Upgrade Challenge

Fermilab Accelerator Complex

Booster prevents x2 PIP-II power: injection energy and transition-crossing limits

2.4 MW: Rapid-Cycling Synchrotron (RCS) Option

Path to 2.4 MW: 8 GeV Linac Option

2.4 MW Upgrade: Challenges

- Competition with Hyper-K / J-PARC
- Short timeline, design Q:
 - Other spigots (μ2e-II, DM and RPF, MuCollider)
- Cost challenge
- The rest of the complex
 - Main Injector RF upgrade
 - 2.4 MW target R&D
- Performance risk (beam losses):
 - Instabilities
 - Injection, collimation
 - Space-charge effects
 - ❖ IOTA-ring p R&D

NUMI horn 0.9MW

Space-charge dominated ring IOTA

II: >20 Proposed Experiments For Rare Processes

(most via Snowmass Whitepapers)

Searches for DM, axions, EDMs, CLFV experiments, muons, light mesons, beam

dump experiments...calls for corresponding beam facilities @FNAL,SLAC,Jlab,SNS

Experiment	Experiment type	Primary beam particle	Beam Energy [GeV]	Beam power [kW]	Beam time structure	
Proton Storage Ring: EM and Awon Searches	Precision tests, Dark Matter	proton	0.7 GeWic beam momentum	1e11 polarized protons per MI	Fill the ring every 1000s	
Pyeis with Muonium	Precision tests	proton (producing surface muons)	9.8 GeV	Tet3pm1 POEper second	cw	
Nucleon Bectromagnetic Form Factors from Lepton Scattering	Neutrino	electron or proton (producing muons)	0.85 GeV to 2 GeV	1 nAto 10 microA for electrons, 10/7 to 10/8 per second for mucro	A continuous or pulsed structure (ideally with a duty factor of 1% or la about the sufficient	
Rare Disays of Light Mesons (REDTOP)	Precision tests	prolan	18-22 GeV (Runit), 08- 092 (Runit), 17 (Runiti)	003-005 (Run I), 200 (Runs II and III)	CN, sice estraction for Run I	
Ultra-cold Neutron Source for Fundamental. Physics Experiments, Including Neutron-Anti-Neutron Oscillations	Precision tests	proton	88-2	1,000	quasi-continuous	
QFV with Muon Decays	CLFV	proton	Not critical 0.8 to a few GeV	100 or more	continous beam on the timescale of the muon lifetime i.e. proton put separated by a microsecond or less. The more continuous the better	
Mde I	CLFV	proton:	1 to 3	100	pulse width. Os of ns or better separated by 200 to 2000 iss. Florible t structure and minimal pulse-to-pulse variation.	
Fixed Turget Searches for new physics with O(1 GeV) Proton Beans Dump	Dark Sector, Nutrino	proton	8.8 to 15 GeV	100 or more	«O(1 micro s) pulse width for neutrino measurements, «O(30 m) pulse width for dark neutre searches, 104-5) or better duty factor.	
FESSHille Clarged Lepton Flavor Violation	CLFV	proton	1-3 GeV	up to 2MW	Title pulses at a repirate of about 1 MHz	
Electron Mossing Momentum (LDMX)	Dark Sector	electron	-3 GeV to -20 GeV	O(1 electron per RF budset at 53 MHz)	OVish:	
Bestroe Beam Dumps	Dark Sector	electron	few GeV	10°(20) electrons on target over the opportunit of numbers	Pulsed beam (dub) factor and specified)	
Proton tradiation Facility	RND	proton	Energy is not very important	fell proton in a lew hours	Pulserbeam (duty factor not specified)	
SEN	Neutrino	proten		22	20tc :	
Milde	CLFV	protorc			< 10/(-10) edirection	
Fixed Target Searches for new physics with O(10 GeV) Proton Dicare Dump	Dark Sector, Neutrino	proton		up to 115	Skim spills less than a few microsec with separation between spills greater than 50 microsec	
Muon beam dump	Dark Sector	proton (producing- muons)	3 GeV muons	3e14 muons in total on target for the whole run	CW	
Moon Collider RSD and Neutrino Factory	RMD	proton	5-30GeV	le12 to le13 protore per bunch	10 - 50 Hz repitate and bunch length 1-3 mi	
Muon Missing Momentum	Dark Sector	proton (producing- muors)	New 10x of GeV	10/10 muors per experimental runtime	Pulsed beam (duty factor and specified)	
High Energy Proton Fixed Target	Dark Sector, Neutrino	protes	D(100 GeV)	te12 POT/s therefore -20W/	OV varies court extraction. "If we could up the duty factor that woull dise even better"(7)	
Test-Boom Facility	RMD	proton	CO, lowe energies would also be beneficial	10 to 100 lets on the testing appointus	Pulsed bears (duty factor and specified)	
TaiNebros	Nating	protes.	(30	1200 or higher	Mi time structure	

Electron beams:

~ GeV to multi-GeV

Proton beams:

~2 GeV CW-capable beam

~2 GeV pulsed beam from storage ring ~1MW

~8 GeV pulsed beam ~1MW

120 GeV Slow extraction or LBNF beam

In many cases, existing or planned facilities can be and should be fully utilized!

Started LESA Beamline for LDMX @ SLAC

Features:

- Parasitic use of the SLAC electron SRF linac E=4-8 GeV
- Low intensity, almost CW beamline, 1-500 *e-/us*
- Beam dump and LDMX experiment
- Construction started

Proposed PIP-II Accumulator Ring (PAR)

- Fixed E=0.8-1.0 GeV proton storage ring
- C=480m in the form of a *folded figure 8*
- Power 100 kW for Dark Sector program, 100Hz
- There is also compact version *C*=120 m

III: Particle Colliders

Important:

- There are too many concepts to cover them here in any detail
- Brief technical descriptions in RMP and PDG:
 V. Shiltsev, F. Zimmermann, RMP 93, 015006 (2021);
 https://pdg.lbl.gov/2021/reviews/rpp2021-rev-accel-phys-colliders.pdf
- Detail evaluations and discussions in the Accelerator Topical Group Reports AF3, AF4, AF6 and AF7, and the <u>ITF report:</u>
 available at https://snowmass21.org/accelerator/

#3: Colliders – EF Input

From the *Energy Frontier* Draft Report

- > Five year period starting in 2025
 - Prioritize HL-LHC physics program
 - Establish a targeted e+e- Higgs Factory detector R&D for US participation in a global collider
 - Develop an initial design for a first stage TeV-scale MuC in the US (pre-CDR)
 - Support critical detector R&D towards EF multi-TeV colliders

Five year period starting in 2030

- Continue strong support for HL-LHC program
- Support construction of an <u>e+e- Higgs Factory</u>
- Demonstrate principal risk mitigation and deliver CDR for a first-stage TeV-scale MuC

➤ After 2035

- Evaluate continuing HL-LHC physics program to the conclusion of archival measurements
- Begin and support the physics program of the <u>Higgs Factories</u>
- Demonstrate readiness to construct and deliver TDR for a <u>first-stage TeV-scale MuC</u>
- Ramp up funding support for detector R&D for EF multi-TeV colliders

Note: common themes and differences with European strategy

Other Important Inputs

e+e- Collider Forum w. EF&TF

Higgs Factories:

FCCee and CEPC more *Lumi* but \$\$ ILC and CCC faster and less costly US to contribute to any *committed* HF

O(10 TeV) colliders: wakefield R&D focused on collider specs

 $\mu + \mu$ - Collider Forum w. EF&TF

10+ TeV cme MC - ideal:

No showstoppers, best *ab-1/TWh*, \$
Need engineering and targeted R&D
Develop pre-CDR by 2030
Establish US MuC organization
Join Int'l collaboration (IMCC/CERN)

US Nat'l Collider R&D Initiative

Gap in R&D on colliders →

Establish targeted OHEP program
Integrated approach to cover:
Int'l efforts (ILC, FCC, IMCC,...) and
toward US options feasible in the US
(CCC, HELEN, 10+ TeV MC, etc)

Implementation Task Force Evaluated 32 collider proposals:

Cost and schedule
Technical readiness, needed R&D
Power requirements, complexity

Physics reach (impact), parameters

(call for R&D on energy efficiency)

Higgs Factory Proposals:

mature ones

Advantages Challenges

[not prioritized list]

FCCee (CEPC):

- Supported by Europe/CERN, high *L*
- Longest, \$\$, power consumption

❖ CLIC:

- Lowest power needs, shortest
- 2-beams (or klystrons?), tolerances

ILC:

- Ready to go, polarization
- Long, e+ source, Japan no-decision

0//22/2022

(New!) LC-Higgs Factories on FNAL Site

Shiftsey | Acceler

Must fit ~7 km including BDS

Required gradients of at least **70MV/m**Compact → lower cost (wrt ILC/CLIC)

Option 1: Cool Copper Collider (C3)

5.7GHz 77K

Option 2: <u>HELEN</u> (Travelling Wave ILC)

1.3GHz 2 K

Higgs Factory Proposals (3): aggressive alternatives Advantages Challenges

- Energy recovery based e+e- colliders (circular or linear):
 - High luminosity per MW power consumption
 - Not yet mature (orders of magnitude in current, Q₀), long, expensive
- Gamma-gamma linear colliders:
 - Need only ½ of energy, short, potentially less expensive, no e+
 - \diamond need two beyond-state-of-the-art FELS to generate γ 's in collisions with e-
- Muon collider Higgs factory:
 - Need only ½ of energy (65+65 = 130 GeV), very compact, less expensive
 - Too long to develop (muon cooling, etc), low *Lumi* (but high X-section)

3-10 TeV/Parton CME:

most discussed

Advantages Challenges

- CLIC-3 TeV :
 - Established CDR, demo facilities
 - Long, \$\$\$, huge power consumption
- FCChh-100 TeV:
 - Re-use FCCee tunnel, high-L, LHC exp.
 - **❖** 20(?) yrs for 16 T magnets, \$\$\$, power
- ❖ SPPC-125 TeV:
 - Re-use CepC tunnel, ep 0.12+62.5 TeV
 - (N) yrs for 20 T magnets, \$\$\$, power
- Muon Collider-10(14) TeV:
 - Potentially lowest cost, best *Lumi/TWh*
 - ❖ 6D cooling *R* , *D* on many subsystems

pp 100 km: FCChh-100TeV, 16T magnets, SPPC-125 20 T

FNAL Siting – 6-10 TeV Muon Collider

- First design concept of up to 10 TeV collider developed
- Operation at 125 GeV, 1 and 3 TeV can be envisioned as intermediate stages
- Capitalize on existing facilities and expertise:
 - PIP-II and upgrades,
 Tevatron tunnel
 - Facilities for cooling, target,
 SRF, and magnet R&D
 - World intellectual leadership in these areas

Energy Frontier Proposals (2):

other ideas

Advantages Challenges

- * "Push to the limit" colliders (circular or linear) ILC-3 TeV, ERL-based LCs 3 TeV cme, 2100 km long "Collider-in-the-Sea":
 - "Just scale-up" technology
 - Enormous power consumption, long, expensive
- Wakefield acceleration (L/P/S) linear ee/γγ colliders:
 - ❖ Most compact, m.b. cost efficient (??) and offer multi-TeV collisions
 - Uncertainties: e+ acceleration, staging, quality, power efficiency, lot of R&D
- ep/eh colliders (LHeC-1.2, FCCeh-3.5, epChina-5.5 TeV):
 - Very cost efficient (\$), feasible, nice additions to proton machines
 - High current 50 GeV ERL technology needs demonstration (3 orders in *P*)

Implementation Task Force

- The Accelerator Implementation Task Force (ITF) is charged with developing metrics and processes to facilitate a comparison between collider projects.
- 10 int'l experts, 2 Snowmass Young's, 3 liaisons to Energy & Theory Frontiers
- ITF addressed (four subgroups):
 - Physics reach (impact), beam parameters
 - Size, complexity, power, environment
 - Technical risk, technical readiness, validation and R&D required
 - Cost and schedule

Thomas Roser (BNL, Chair)

Philippe Lebrun (CERN)

Steve Gourlay (LBNL)

Tor Raubenheimer (SLAC)

Katsunobu Oide (KEK)

Jim Strait (FNAL)

(FNAL)

Vladimir Shiltsev Reinhard Brinkmann (DESY)

John Seeman (SLAC)

Dmitry Denisov (BNL)

Meenakshi Narain (Brown U.)

Liantao Wang (U.Chicago)

Sarah Cousineau (ORNL)

Marlene Turner (LBNL)

Spencer Gessner (SLAC)

From the ITF Report Draft: Tables 1-3, 5

	CME (TeV)	Lumi per IP (10^34)	Years, pre- project R&D	Years to 1 st Physics	Cost Range (2021 B\$)	Electric Power (MW)
FCCee-0.24	0.24	8.5	0-2	13-18	12-18	280
ILC-0.25	0.25	2.7	0-2	<12	7-12	140
CLIC-0.38	0.38	2.3	0-2	13-18	7-12	110
HELEN-0.25	0.25	1.4	5-10	13-18	7-12	110
CCC-0.25	0.25	1.3	3-5	13-18	7-12	150
CERC(ERL)	0.24	78	5-10	19-24	12-30	90

FCCee: 2-4 IPs

all LCs: 1 IP

Disclaimer: luminosity and power consumption values have not been reviewed by ITF

Estimated Total Project Cost

No escalation No contingency

NB: HELEN, C³ m.b. 85% of ILC but in the same range category

From the ITF Report: Tables 1-3, 5

CME (TeV)

Lumi per IP (10^34)

Years, preproject R&D Years to 1st **Physics**

Cost Range (2021 B\$)

Electric Power (MW)

Disclaimer: luminosity and power consumption

values have not been reviewed by ITF

all LCs: 1 IP

MC-3/14: 2 IPs

FCChh: 2-4 IPs

Estimated Total Project Cost

No escalation No contingency

NB: broad ranges

CLIC-3	3	5.9	3-5	19-24	18-30	~550
ILC-3	3	6.1	5-10	19-24	18-30	~400
MC-3	3	2.3	>10	19-24	7-12	~230
MC-FNAL	6-10	20	>10	19-24	12-18	O(300)
MC-10-IMCC	10-14	20	>10	>25	12-18	O(300)
FCChh-100	100	30	>10	>25	30-50	~560

ITF Take Away

- #1: ITF reviewed concepts to allow comparison but did not prioritize
- #2 ITF did not review luminosity and power consumption projects
- #3 ITF recommends and we support them that R&D to reduce the cost and the energy consumption of future collider projects is given high priority
- #4 ITF evaluations could be updated on a regular basis

ITF: Colliders' Lumi per Power

Snowmass 2021

Part IV

Accelerator "Message & Asks":

- Ongoing efforts
- Goals by next Snowmass/P5: Facilities
- Accelerator R&D Priorities for Next Decade
- P5 and Accelerator R&D

"We need new ideas coming in"

Message #1 Facilities: We have a broad array of accelerator technologies and expertise to design and construct prioritized HEP accelerator projects (NF, RPF, or EF).

(From Joann Hewett talk Sunday)

- see how few new proposals are in the system/under consideration

Accelerator Frontier "Message" #2

#2 Colliders: We need an integrated future collider R&D program to engage in the design and to coordinate the development of the next generation collider projects:

- to address in an integrated fashion the technical challenges of promising future collider concepts, that are not covered by the existing *General Accelerator R&D* (GARD) program.
- to enable synergistic U.S. engagement in ongoing global efforts (e.g., FCC, ILC, IMCC)
- to develop collider concepts and proposals for options feasible to be hosted in the U.S. (e.g., CCC, HELEN, Muon Collider, etc)

Future Colliders R&D Program - Initiative

Accelerator Frontier "Message" #3

#3 R&D: We have an ongoing R&D program aimed at fundamental beam physics and long-term level of accelerator concepts and technologies (RF, magnets, beam physics, advanced concepts, targets & sources, etc):

- All these items have broad applicability across future accelerators with ideas from Universities and labs
- R&D is key to facilities for neutrino and rare processes and colliders

Accelerator R&D: Next Decade

Multi-MW targets:

- 2.4 MW for PIP-III
- 4-8 MW for muon collider

Magnets for colliders and RCSs:

- 16T dipoles
- 40T solenoids
 - 1000 T/s fast cycling ones
 ...coordinated with US MDP

Accelerator & Beam Physics

- High intensity/brightness beams acceleration and control
- High performance computer modeling and AI/ML approaches
- Design integration and optimization, incl energy efficiency

Wakefields:

- collider quality beams
- efficient drivers and staging
- close coordination with Int'l(Euro Roadmap, EUPRAXIA,..)

SC/NC RF:

- 70-120 MV/m C³
- 70 MV/m TW SRF
- new materials, high Q₀
 - efficient RF sources

07/22/2022 Shiltsev | Accelerator Frontier

Accelerator Frontier "Message" #4

#4 Workforce: We need to:

- strengthen and expand education/training programs:
 - support for university-based research, incl. grants to involve professors in DOE lab facilities & projects;
 - strengthen US PAS;
 - encourage labs to accept more traineeship students incl. international
- Outreach: enhance recruiting, promote colloquia at universities
- DEI: enhance support to national undergrad recruiting class to bring women and URM talent

Accelerator Frontier "Message" #5

#5 Accelerator development should be part of P5: Planning for accelerators should be aligned with the strategic planning for particle physics and should be part of the P5 prioritization process.

Thanks for your attention!

- It was long Snowmass, definitely a success for AF, thanks to:
 - Acc.Frontier Topical Group Conveners
 - Liaisons (EF, IF, NF, TF, CEF, CF)
 - Implementation Task Force
 - eeCollider Forum
 - Muon Collider Forum
 - Fermilab Collider Group
 - Conveners of Collider and RPF Agoras
 - Our (numerous) international partners
- Special thanks:
 - Bigger accelerator community for enthusiastic participation
 - Gordon and Shih-Chien for excellent organization of CSS
 - Eric Yuan, the founder of Zoom

