
The Muon g-2 Experiment at Fermilab

James Stapleton Muon g-2 Postdoctoral Research

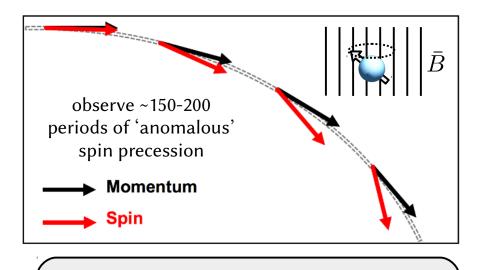
Muon Magnetic Dipole Moment Anomaly as SM Test

 $\vec{\mu} = g \frac{q}{2m} \vec{s}$

Dirac point-like particle: g = 2

```
Real muon: g = 2.0023318416 \pm 0.000000013
```

Pushing the Limits of Precision

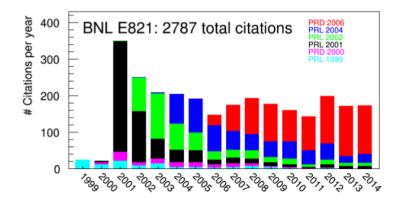

- *g*-factors: some of the *most precisely* measured particle properties
- Reaching for precise SM predictions spurs development of theory

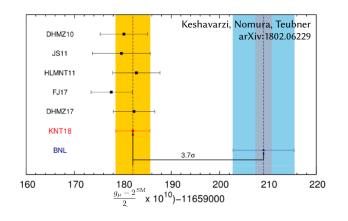
<u>The Muon</u>

- Produced in large quantities, with high polarization
- More sensitive to new physics than electron $(m_{\mu}/m_{e})^{2}$
- Nice for *direct measurements* of spin precession (lifetime, E/m)

Brookhaven experiment measured unexpected ~3σ excess ~15 years ago!

Brookhaven E821 Measurement



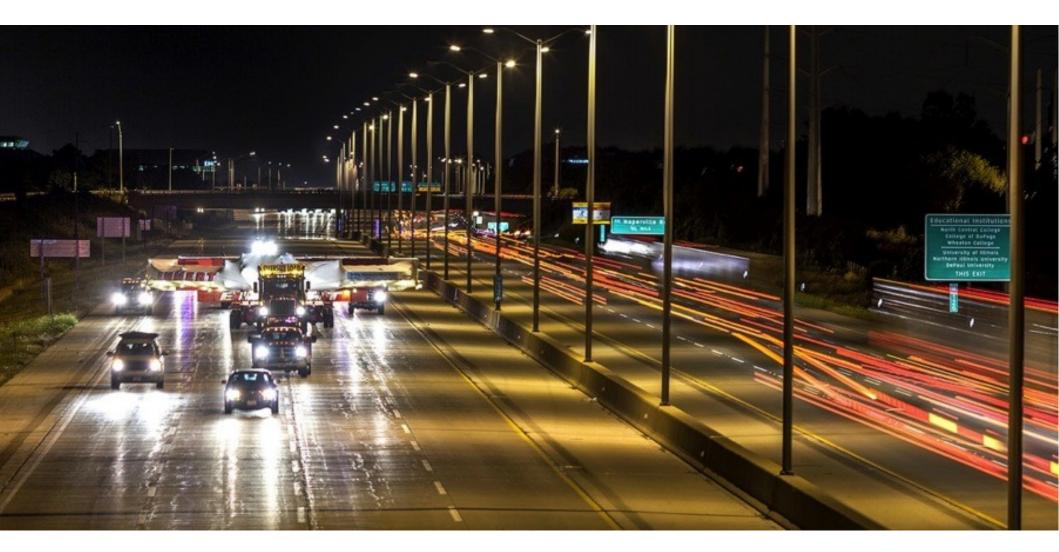

 $\mu \rightarrow \nu \nu e$ Parity-violating decay correlates e^{\pm} momentum with μ^{\pm} spin

Muon Storage Ring @ Brookhaven National Lab

Brookhaven E821 Measurement

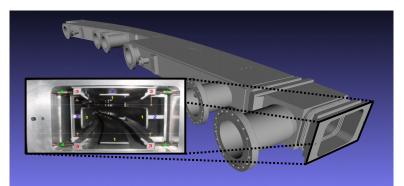
- result generated plenty of interest
- confirmation needed only statistics, but AGS was needed for other programs

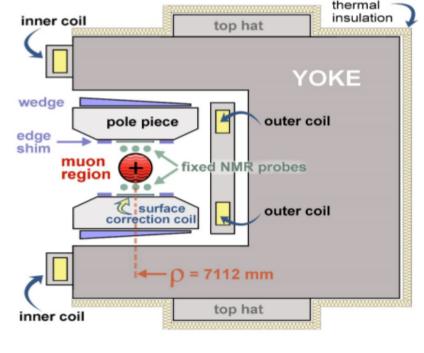
- SM predictions continued refinement (hadronic vacuum polarization & light-by-light processes, plus lattice work)
- tension NOT alleviated
- updated SM prediction (using latest HVP refinements) is 3.7σ below original measurement


Muon g-2 at Fermilab (E989)

- Pre-existing facilities & wealth of experience from Tevatron operation
- Adapt anti-proton source to impinge protons on heavy target
- Re-purpose buncher & accumulator to control $\pi \Rightarrow \mu$ evolution into a highly-polarized muon beam
- New muon line delivers 16 bunches/1.4 seconds, ring stores 10k-16k muons per bunch
- Target: increase overall precision ~4x
 - Accumulate ~20x BNL statistics in 400-500 days of continuous running
 - Reduce systematics through ring & detector upgrades

Installing the Ring





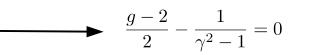
Muon Storage and Spin Precession

- ~14m diameter NbTi superconducting coils: ~4kA \Rightarrow 1.45 Tesla
- fine-tuning via wedges, shims, and correction coils (~3x more uniform for Fermilab g-2)
- vacuum chambers & electrostatic quadrupoles: beam integrity & focus
- **muon storage region**: 9cm diameter channel defined by circular beam collimators

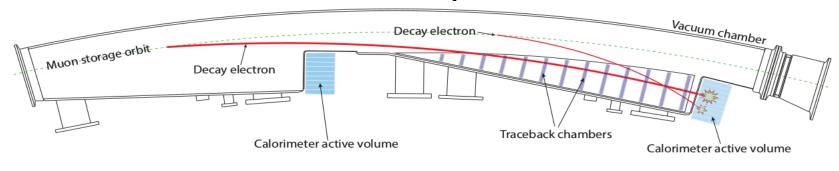
vacuum chamber model (and photo showing electrostatic quadrupole plates)

ring/magnet cross section

Muon Storage and Spin Precession


spin precession frequency (relative) in B dipole field (1.45T) and E quadrupole field (~20kV) •

$$\bar{\omega}_a \equiv \bar{\omega}_s - \bar{\omega}_c \propto -\frac{q}{m} \left[\left(\frac{g-2}{2} \right) \bar{B} - \left(\frac{g-2}{2} - \frac{1}{\gamma^2 - 1} \right) \frac{\bar{\beta} \times \bar{E}}{c} \right] \qquad (*\text{using } \bar{\beta} \perp \bar{B})$$


- quads introduce extra precession term $\propto \bar{\beta} \times \bar{E}$ ٠
 - ~cancel by running at the 'magic momentum' 3.09 GeV/c $\longrightarrow \frac{g-2}{2} \frac{1}{\gamma^2 1} = 0$
 - this and B field sets the orbital radius to 7112cm
- precession period ~4.4 μ s (boosted muon lifetime ~64 μ s) .

Beam storage systematics

- Muon bunch not perfectly centered in storage region
- Resulting betatron oscillations introduce other terms
- Vertical/horizontal oscillations affect e⁺ calorimeter acceptance
- Introduction of tracker was a critical upgrade over Brookhaven ٠

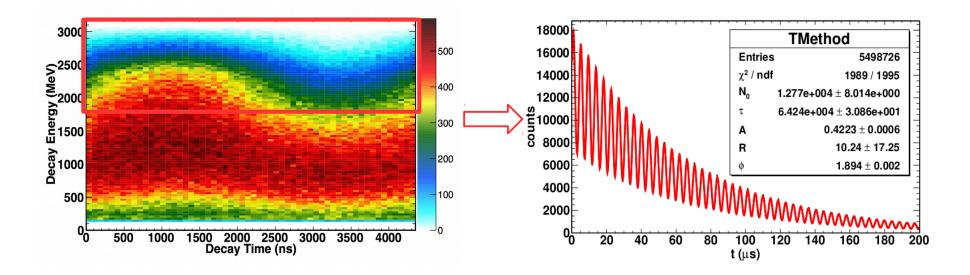
Detector Systems


Calorimeters (24)

- capture ~1/3 of inward-spiraling positrons
- energy resolution ~ few percent
- segmented design for spatial separation
- *improved pileup discrimination is a significant upgrade over E821*

Straw Trackers (2)

- positioned in front of two calorimeters
- 8 modules, each with 4 planes of straws
- angular resolution: extrapolate e⁺ back to storage region & characterize beam dynamics
- another significant upgrade over E821


Anomalous Precession Frequency Measurement

Anomalous Precession Frequency Measurement

angular asymmetry maximal for highest-energy positrons

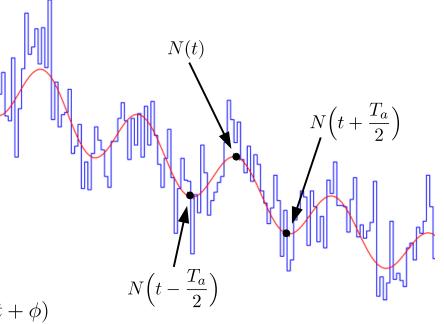
Jun 1, 2018

Quantifying the Precession

Measure the wiggles! 3000 ٠ 500 C2500 2000 1500 Decah Euergy MeV) Decah Euergy Decah Euergy Decah Euergy 1st order: time-binned positron hits above *E* threshold ٠ (~1.8GeV) 400 redundant calibrations & reconstruction algorithms protect ٠ 300 against bugs & other mistakes 200 alternatives: ٠ total energy deposit — 100 500 asymmetry-weighting or *E*-binning (both rely on 10 00 2000 2500 Decay Time (ns) 500 1000 1500 3000 3500 4000 energy estimate) Fit: $N_e(t) = N_0 e^{-t/\gamma \tau} \left[1 - A \cos(\omega_a t + \phi_a) \right]$ 24000 18000 QMethod TMethod 22000 16000 Entries 5498726 Entries 1.772461e+007 20000 χ^2 / ndf 14000 χ^2 / ndf 1989 / 1995 2034 / 1995 18000 N₀ 1.277e+004 ± 8.014e+000 N_c 1.953e+004 ± 7.506e+000 12000 <u>ନ୍</u> 16000 stin 10000 8000 ت<u>ة</u> 14000 6.424e+004 ± 3.086e+001 6.433e+004 ± 1.899e+001 12000 10000 0.4223 ± 0.0006 0.2301 ± 0.0004 10.24 ± 17.25 7.452 ± 19.464 6000 1.894 ± 0.002 8000 $\textbf{1.892} \pm \textbf{0.002}$ 6000 4000 4000 2000 MMMMM 2000 0^L 180 200 20 40 140 160 60 100 120 00^E 20 40 60 120 140 160 180 80 100 200 t (us) t (us) reconstructed e⁺ above threshold total accumulated energy energy (enhanced wiggle) deposit (more statistics) Jun 1, 2018 Fermilab Muon g-2 | Heavy Quarks & Leptons 2018

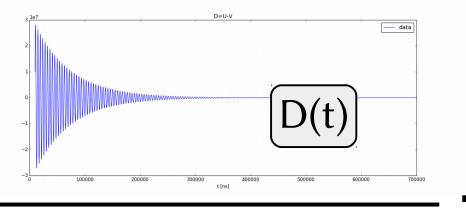
Analysis Systematics

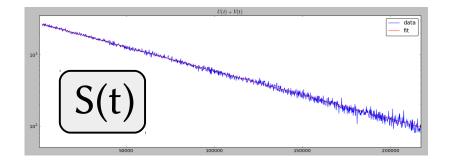
$$N_e(t) = N_0 e^{-t/\gamma \tau} \left[1 - A\cos(\omega_a t + \phi_a) \right]$$

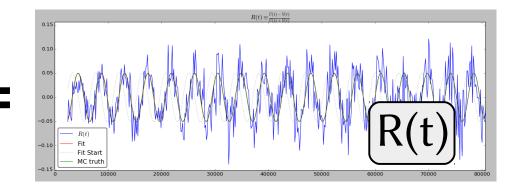

- Some effects directly introduce **systematic offsets** to the measured anomalous precession frequency
 - Example: time-dependence in phase $\phi_a(t) \simeq \phi_0 + \phi_1 t$
 - 1st order shift: $\cos(\omega t + \phi) \Rightarrow \cos(\omega t + \phi_1 t + \phi_0)$
- Other effects affect the overall shape & degrade fit quality
 - betatron oscillation + calorimeter acceptance introduce other modulation frequencies
 - many effects controlled directly by modeling terms in fit function
- Multiple factors contribute to 'apparent µ decay rate' (exponential)
 - pileup & SiPM gain variation skew exponential decay shape
 - 'lost muons' leak out of the storage region and hit calorimeters
 - one approach is very well-suited to control these...

Jun 1, 2018

Ratio Method

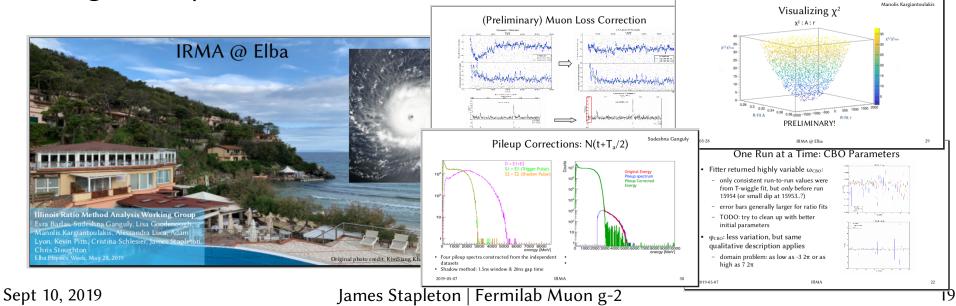

- Relationship between these three points describes both decay **and** wiggle
 - compare y-values differences from left & right interval
 - separates exponential from oscillation
- We use 'Recon East' positrons
- Perform three 'independent' fits for all datasets


$$D \equiv N\left(t + \frac{T_a}{2}\right) + N\left(t - \frac{T_a}{2}\right) - 2N(t) \sim e^{-t/\tau} \cos\left(\omega_a t + \phi\right)$$
$$S \equiv N\left(t + \frac{T_a}{2}\right) + N\left(t - \frac{T_a}{2}\right) + 2N(t) \sim e^{-t/\tau}$$
$$R \equiv D/S \sim \cos\left(\omega_a t + \phi\right) \qquad \text{*Yo}$$



*You may sometimes see U = $N_{+} + N_{-}$ and V = 2N

Ratio Method



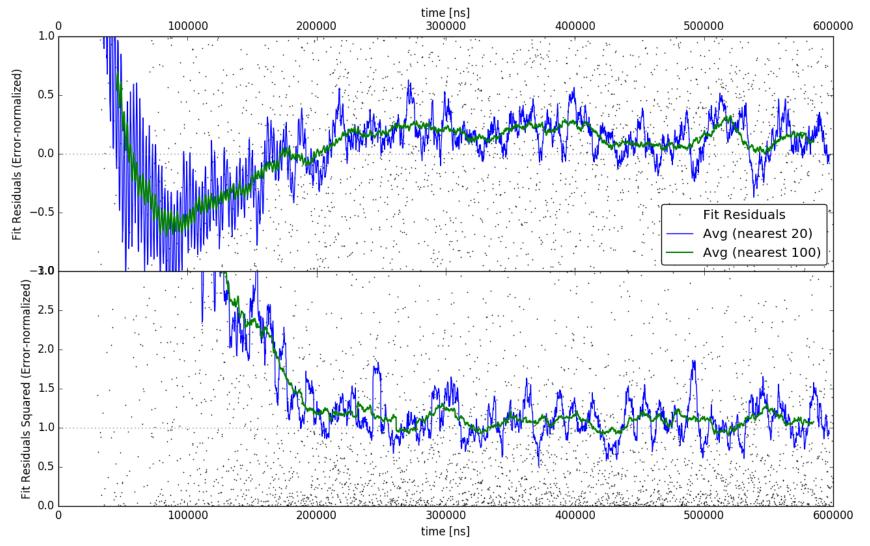
Illinois Ratio Method Analysis (IRMA)

- Muon spin precession analysis group
- Fermilab + University of Illinois, Urbana-Champaign
- Named for the 'Ratio Method' (but we are not restricted to that)
- Target: analysis of Run 2 data

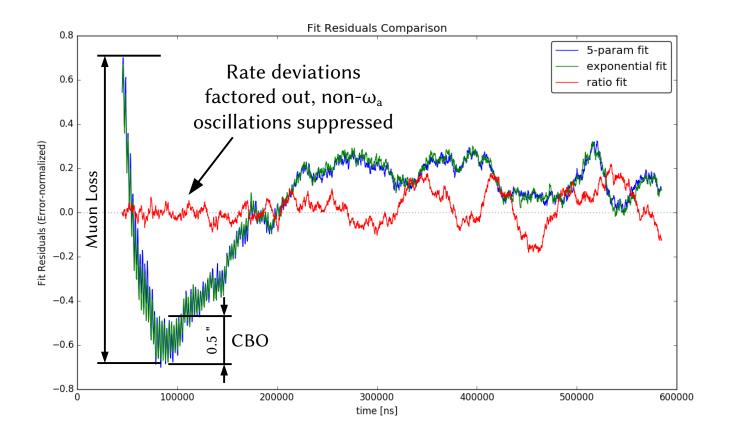
IRMA's Unique Contributions

- Independently fit *three* representations of data
- art-to-Python analysis environment
- Unique combination of analysis variety + reconstruction
- Run-by-run fits
- Time-series residuals/pulls analysis
 - fit pulls usually seen as an *unordered distribution* (neglecting left-to-right ranking in fit)

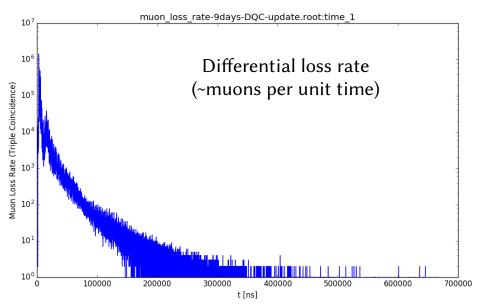
Consistent & Independent Fits


- Functional form includes nearly all parameters in all three fits
 - time spectrum: $N(t) = N_5(t) \cdot \left(1 + A_{cbo} e^{-t/\tau_{cbo}} \cos(\omega_{cbo} t + \phi_{cbo})\right)$
 - note: not yet using A(ω_{cbo}) and other forms as in Nick's parameterizations
- Ratio and exponential fitting functions call N(t) function at three separate times:
 - exponential fit function: $N(t + T_a/2) + N(t T_a/2) + 2N(t)$
 - ratio fit function: $\frac{N(t + T_a/2) + N(t T_a/2) 2N(t)}{N(t + T_a/2) + N(t T_a/2) + 2N(t)}$

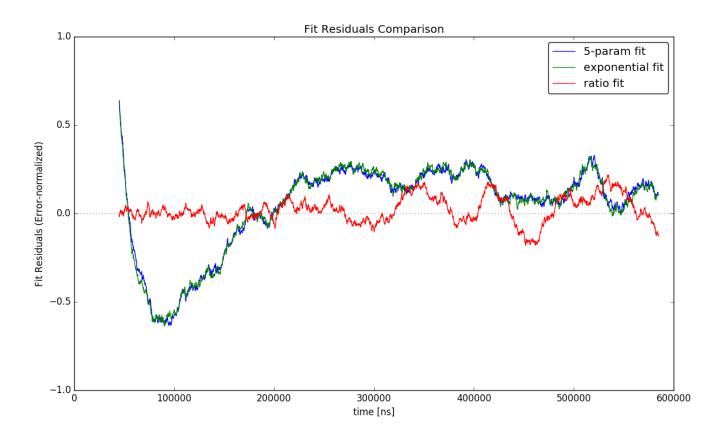
function of *ALL* fit parameters (except normalization)


fit parameters

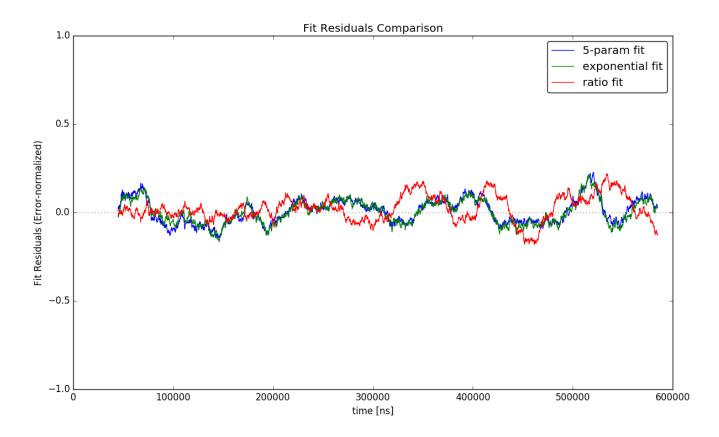
- Statistical precision shows expected sensitivities
 - huge error bars for e.g. $\delta \omega_a$ in exponential fit, $\delta \tau_{\mu}$ in ratio fit
 - time-spectrum & ratio fit see roughly equal $\delta \omega_{a}$


5 Parameter Fit Residuals

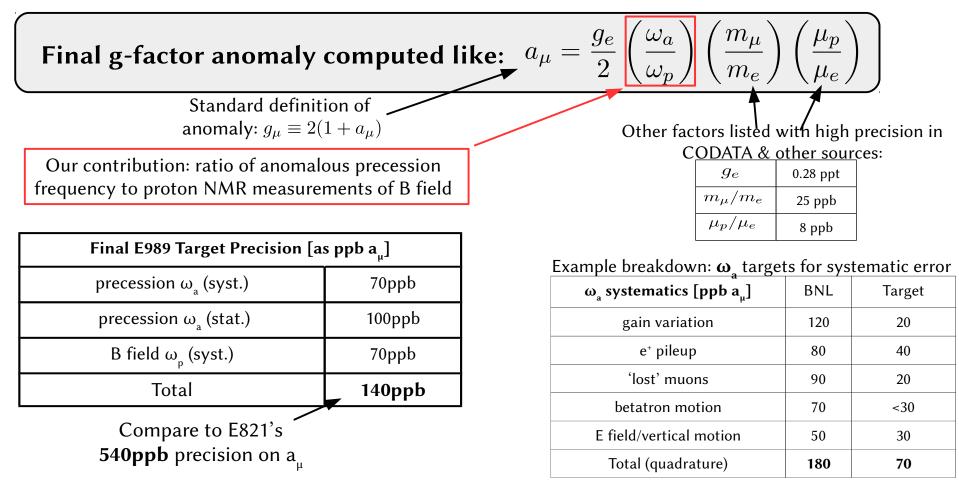
Separation of Rate-based Systematics


Muon Loss

- Significant deviation from bulk ~exponential shape
- Latest mu loss rate from Sudeshna
 - triple coincidences
- Multiply model by integrated loss count (with scaling factor)


$$N(t) \longrightarrow N(t) \cdot \left(1 - Ce^{-\frac{t_0}{\tau_a}} \int_{t_0}^t L(t') e^{\frac{t'}{\tau_a}} dt'\right)$$

Muon Loss Mitigation: Before



2019-05-28

Muon Loss Mitigation: After

Error Budget

Muon g-2 Software & Computing

- Nature of g-2 shapes computing resources
 - quasi-HEP experiment + NMR experiment
 - *one* precession analysis
- Medium-sized experiment
 - adopted many Fermilab-native tools
 - developers: wide variety of computing & physics backgrounds
 - most code written by a few distinct small groups
- I won't cover everything here!
- Just my personal experience with:
 - CVMFS
 - code development & release for offline processing & analysis
 - interactive access to data in framework files

CVMFS for Muon g-2

- We have CVMFS mounted on our group VMs, on grid nodes, and in the occasional personal VM or container (all SLF6, for now)
 - distributes in-house software as well as externals to cover dependencies
- Externals: requirements like build tools, Python interpreter, ROOT, Geant4, etc
- Muon g-2 CVMFS share:
 - two people authorized to publish to Stratum-0
 - build tool can [de]select packages from CVMFS installation & set up an area for local build to replace them
 - periodic releases cut from several (17) git repositories
- Online & Offline: supplies code for offline running, but also hosts installations of online code (DAQ, quality monitoring) for offline compile-time & run-time dependencies
- Our user experience with CVMFS has been excellent
- Use with a VM: great for times when WiFi is far away...

Sept 10, 2019

CVMFS for Muon g-2

- We have CVMFS mounted on our group VMs, on grid nodes, and in the occasional personal VM or container (all SLF6, for now)
 - distributes in-house
- Externals: requiremer
- Muon g-2 CVMFS sha
 - two people authorize
 - build tool can [de]se replace them
 - periodic releases cut
- Online & Offline: sup code (DAQ, quality m

... or when in a concrete pit!

Geant4, etc

area for local build to

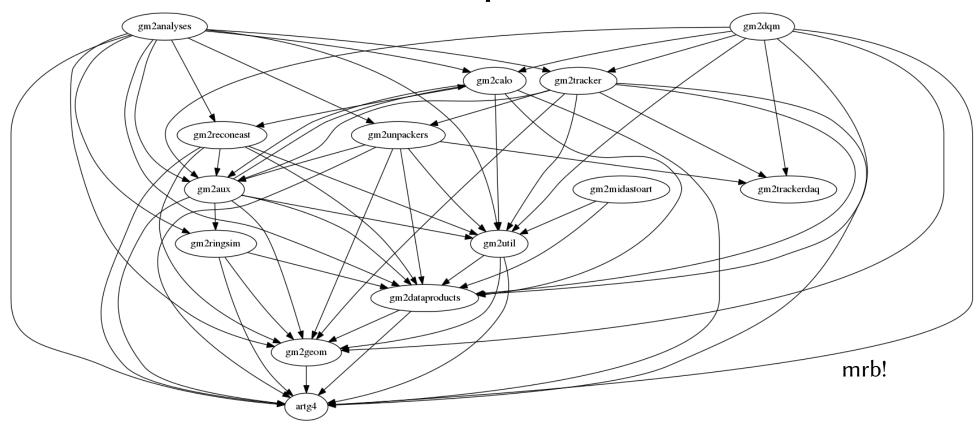
nstallations of online e dependencies

- Our user experience with CVMFS has been excellent
- Use with a VM: great for times when WiFi is far away...

'Off-Label' Use

- Serve as a text file 'database' (calibration constants, etc)
 - NOT exactly recommended for calibration constants (but works great if you need it to!)
- Online/DAQ operations: very convenient for quick software deployment
 - not possible to track clients, which matters during breaking upgrades (lots of people forgot they were getting libXYZEtc from CVMFS)
- Lots of other convenient corner cases not targeting Offline purposes

Code Development & Release


- We have 20-25 git repositories with different purposes.
 - official 'Offline Releases' include 17 interdependent repos
 - 10-20 active developers (<10 *very* active)
- History has driven evolution of code
 - Summer 2016: SLAC testbeam run (calorimeter) Releases not critical

Release as-needed

Run 2 release every two weeks Run 1 release as-needed

- Summer 2017: Ring/Beam Commissioning ~
- Winter-Spring 2018: Physics Run 1
- Spring-Summer 2019: Physics Run 2
- Summer 2018-present: Run 1 Analysis
- Near future (post Run 1 Analysis)
 Release every ~month

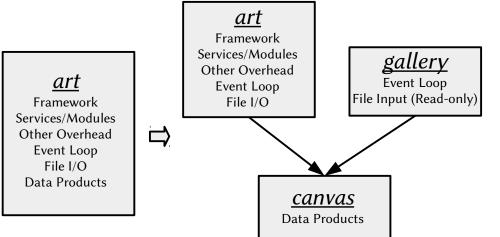
Code Repositories

NOT shown: ~half a dozen 'non-release' packages

James Stapleton | Fermilab Muon g-2

Flexible & Responsive Release Management

- Adapt! (primary customer changes over time, as well as core product)
- Need intuition for the growth & stability of the codebase
- Regular or irregular releases? Depends on experiment's growth phase!
- Flexible coding conventions, development cycle recommendations
- CRITICAL for good administration of g-2 software:
 - contact with developers (communication!)
 - solicit discussions of code evolution often, keep an eye on important tasks, respond to developers' timelines & priorities
 - gauge relative strengths/weaknesses of developers in order to help them efficiently
 - keep a Linux expert on hand ;-)


art

- *art*: Fermilab's event-processing framework, developed in-house
 - greatest asset: responsive developer team
- File format is custom specification on a ROOT file substrate: put Data Products (arbitrary objects with a system of labels) into a Run, SubRun, or Event
- Events processed through a Module Path, modules append Data Products to Event, SubRun, or Run
- Analyzer module base class requires implementation of void analyze(art::Event & e) (executes once for each event)
- Data Products accessed by Handle
 - requested from Event, SubRun, or Run via templated member GetValidHandle<>()
 - specify Module Label, Instance Name, and Process ID
 - specify C++ type of Data Product in templated call to GetValidHandle<>()

Data Inspection

- Accessing file content is nontrivial
- The Only Native (Event-based) Interface to Content: create a new framework module and run it!
 - implement a new module, build & link to framework stuff, create new config file, load/run framework executable, etc
 - ...and the event-processing software exists in an environment with lots of requirements (only specific OSs, exact compiler version enforced, etc)
- *Non-framework* access is possible through TTree/TBrowser, but this has limitations (i.e. unintended use)
- Problem: no *spontaneous & interactive* route to inspecting contents of data files

Refactor: art, canvas, gallery

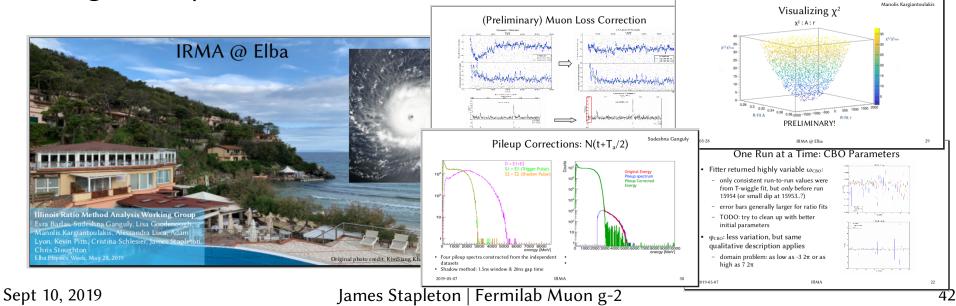
- *art* developers moved 'Data Provenance' code to the new dependency *canvas*
- new package *gallery* provides similar interface:
 - native 'event loop'
 - fetch Data Products by handle
 - good for prototyping art framework code
 - (read-only)
- available via gcc, ROOT macro, or Python
- gallery via Python suggests interactive inspection of data

heist!

- Bare Python interface is clunky, so *heist* Python module wraps *gallery* interface generated by PyROOT
- A heist script is analogous to a single module directly fed art Events from file
 - event loop, data product handles, dereference art::Ptr() (smart pointer to another data product), easy to skip events with no matching entries
 - ...plus the introspection/reflection awesomeness of Python!
- Includes some extra useful tools:
 - list Data Products in a file, search by simple match, and a magic 1s() function to describe Data Products (and lists of them)
- I use heist nearly exclusively, and we use it in the analysis group I lead
- Others in Muon g-2 have started to pick it up
- Almost ready to advertise to other experiments

	Ť	JupyterLab - Mozilla Firefox	- +	×	
<u>Eile E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp					
◯ JupyterLab × +					
\leftarrow	→ C' II i localhost:88	8/lab	× ×	-	
	🗀 lookup 🗎 g2ana 🗎 DAQ Shift 🗋 kicker 🗋 sim 🖆 releases 🗋 docs 🚔 calo 🗎 ml/dl 🖆 news/events 🖨 read 🍐 gd 🖨 Jclub 🖨 pandas 💻 test.txt (wrong one) 💦 👋				
C File Edit View Run Kernel Tabs Settings Help					
Files	SEARCH	Q # README.md X Console 1 X			
	CONSOLE	Python 2.7.14 (default, Jan 10 2018, 09:46:06)			
Бu	Change Kernel	Type "copyright", "credits" or "license" for more information.			
Running	Clear Console Cells	IPython 5.8.0 An enhanced Interactive Python.			
LL.	Close and Shutdown	? -> Introduction and overview of IPython's features.			
s	Insert Line Break	%quickref -> Quick reference. help -> Python's own help system.			
Commands	Interrupt Kernel	object? -> Details about 'object', use 'object??' for extra details.			
	New Console			U	
0	Restart Kernel	In [1]: from heist import *			
Tabs	Run Cell (forced)	Welcome to JupyROOT 6.12/04			
	Run Cell (unforced)				
	Show All Kernel Activity	<pre>In [2]: t0tag = InputTag('gm2aux::QIntegralArtRecords_t0PulseProcessoroffline')</pre>			
	FILE OPERATIONS	<pre>In [3]: reader = ArtFileReader('/gm2/app/users/jstaplet/test.root')</pre>			
	✓ Autosave Documents	<pre>In [4]: for event in reader.event loop(nmax=8):</pre>			
	Close All	<pre>t0rec = event.get_record(t0tag)</pre>			
	Close Console 1	Ctrl+Q if not t0rec: continue print event.get_label(),len(t0rec)			
	Close Other Tabs	event_loop: automatically initializing heist.Event			
	Close Tabs to Right	Run16461 SubRun432 Event2 6			
	New View for	Run16461 SubRun432 Event4 6 Run16461 SubRun432 Event6 6			
	Open from Path	Run16461 SubRun432 Event8 6			
	Reload from Disk	Reached maximum 8 events! Successfully opened file /gm2/app/users/jstaplet/test.root			
	Revert to Checkpoint	Successfully opened file /gmz/app/dsets/jstapie//testifoot			
	Save	Ctrl+S IP (E) - die ()			
	Save As	and it works in a Jupyter notebook!			
	HELP			-4	
	JupyterLab Reference			ן ך	
	Launch Classic Notebook			_	
9		James Stapleton Fermilab Muon g-2			

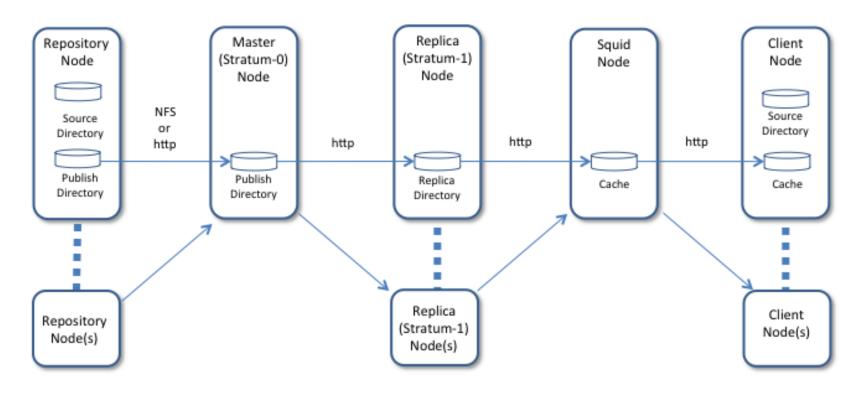
Sept 10, 2019


Path Toward Results

- Run 1 analysis is wrapping up & targets first publication within a few months
- Run 2 production starts in earnest soon
- IRMA group uniquely targets Run 2

Illinois Ratio Method Analysis (IRMA)

- Muon spin precession analysis group
- Fermilab + University of Illinois, Urbana-Champaign
- Named for the 'Ratio Method' (but we are not restricted to that)
- Target: analysis of Run 2 data


Final Notes

- Muon g-2 are happy CVMFS customers!
 - does exactly what is advertised, no headaches
- Zen of computing: *it's really about people* (not computers)
 - true for our software, and true for Fermilab's support (art, etc)
- Scientific computing designs make assumptions about data (content, format/type, sizes) but should also assume
 - unexpected variation in data
 - a human will need to inspect the data at various points

CernVM FileSystem (CVMFS)

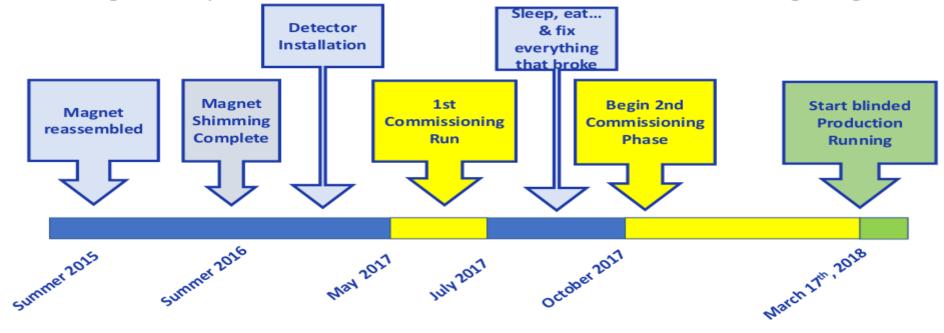
- POSIX read-only user-space filesystem (FUSE)
- Optimized for distribution of program files!
 - low-latency, on-demand directory listing & single-file access
 - entirely HTTP
 - aggressive caching
 - easy parallelization for computing grid nodes
- Accessible at data centers worldwide ("already there" for FermiGrid and many other computing facilities)
- Lots of handy features
 - low-maintenance
 - easy to publish files, revisioned filesystem image with named tags
 - stability on client (no FUSE problems, always mounts & unmounts cleanly, handles network outages well)
 - distributed mirroring (provided setup of certain networks)
 - good configurable parameters for clients, but defaults are well-chosen!

CVMFS

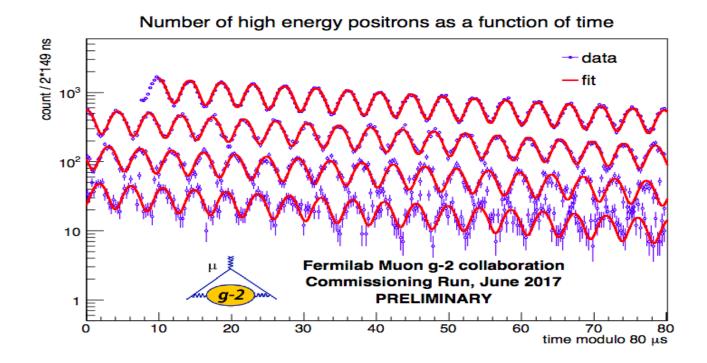
Graphic from S. Fuess

CVMFS Strengths & Limitations

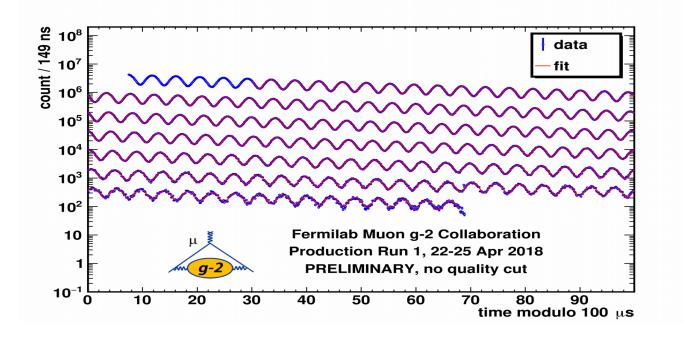
<u>Strengths</u>

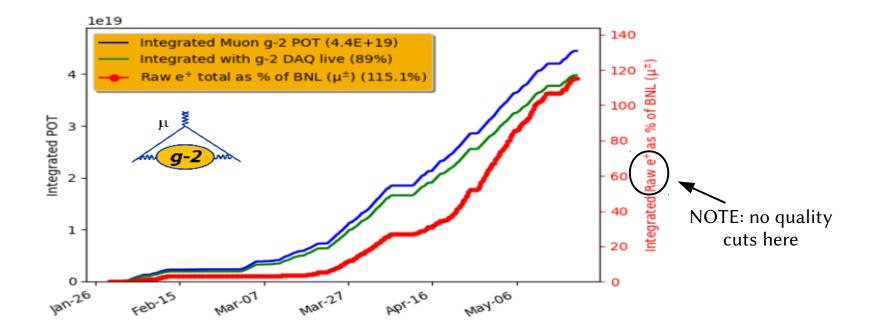

- Excellent for program files
- Absurdly stable
- Bandwidth efficiency
- Easy to scale on grid (HTTP caching)
- No concurrency issues
- Easy client installation & configuration (c.f. NFS, Samba)
- Unexpected shutdown precipitates no issues due to journaling, etc

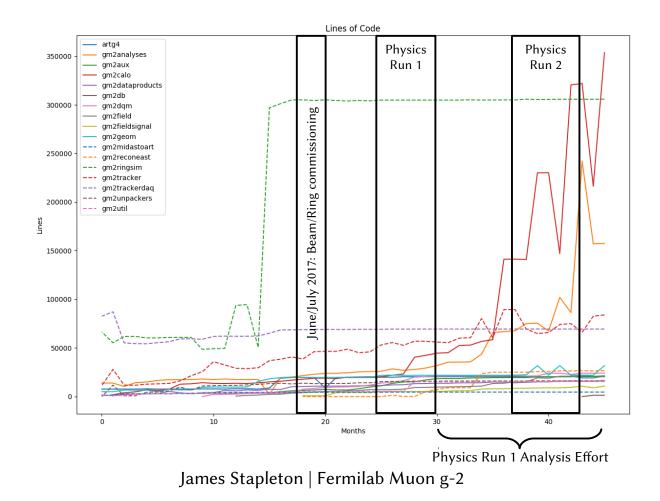
Limitations


- Read-only, not easy to track clients*
- Scalability *like Muon g-2 has seen* requires setup of Stratum-1 network & HTTP grid caching, some coordination with remote processing sites
- Can be finicky about file permissions
- Does not like >200k entries in the same volume*

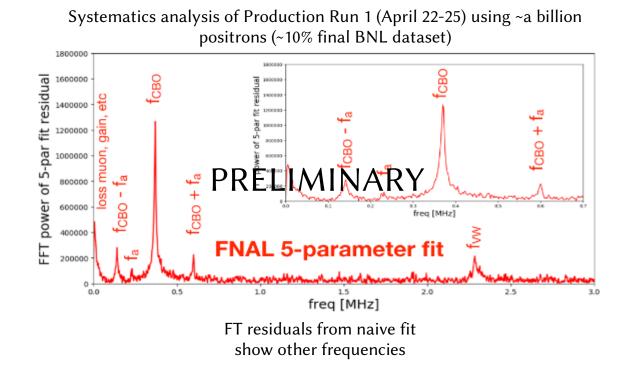
Timeline

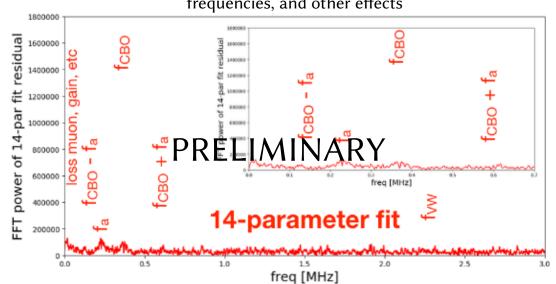

FNAL g-2 Experiment : Milestones & Recent Highlights


June 2017 Commissioning Run

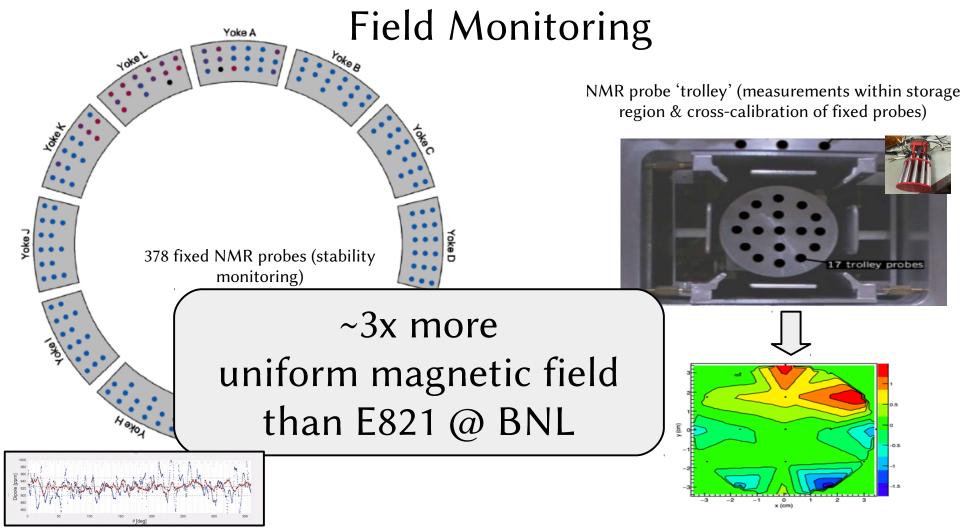

Production Run 1

Data Accumulation This Year

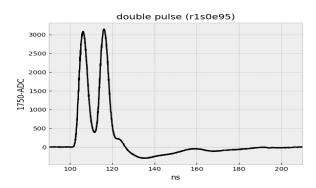

Code Development


Sept 10, 2019

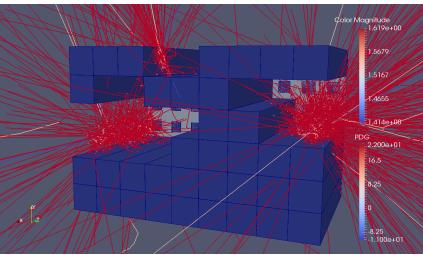
51


Correcting Precession Frequency Systematics

Correcting Precession Frequency Systematics

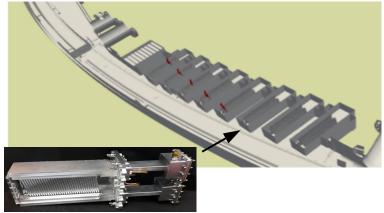

Extend fit form to model vertical/horizontal betatron oscillation, lost muon CBO frequencies, and other effects

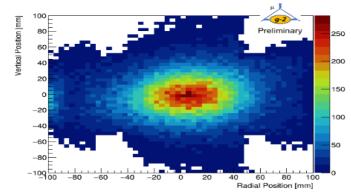



Jun 1, 2018

Calorimeters

- 6x9 array of PbF₂ crystals (2.5cm x 2.5cm)
- Cerenkov shower from positron (and secondaries)
- readout via SiPMs
- fast recovery in readout electronics
- digitized @ 800MHz
 - <5ns time separation in a single crystal
- energy resolution scales as 1/sqrt(E)
 - 5% at 1GeV, 2% at 3GeV
- SiPM gain monitored via laser calibration




Jun 1, 2018

Straw Trackers

- 4 layers of aluminized mylar straws filled with Ar:ethane
- critical for reducing calorimeter reconstruction systematics
- reconstruct muon distribution during runtime $(\rho \otimes \bar{B})$
- monitor horizontal & vertical beam oscillations in storage region

reconstructed muon beam distribution