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Muon Magnetic Dipole Moment Anomaly as SM Test
Dirac point-like particle:

Real muon:

● g-factors: some of the most precisely measured particle properties

● Reaching for precise SM predictions spurs development of theory

Pushing the Limits of Precision

● Produced in large quantities, with high polarization

● More sensitive to new physics than electron

● Nice for direct measurements of spin precession (lifetime, E/m)

The Muon

Brookhaven 
experiment 
measured 

unexpected 
~3σ excess ~15 

years ago!



Brookhaven E821 Measurement

Muon Storage Ring @ Brookhaven National Lab
Parity-violating decay correlates e± 

momentum with μ± spin

observe ~150-200 
periods of ‘anomalous’ 

spin precession



Brookhaven E821 Measurement

● result generated plenty of interest

● confirmation needed only statistics, but AGS was needed for 
other programs

● SM predictions continued refinement (hadronic vacuum 
polarization & light-by-light processes, plus lattice work)

● tension NOT alleviated

● updated SM prediction (using latest HVP refinements) is 3.7σ 
below original measurement

Keshavarzi, Nomura, Teubner
arXiv:1802.06229



Muon g-2 at Fermilab (E989)
● Pre-existing facilities & wealth of experience from Tevatron 

operation
● Adapt anti-proton source to impinge protons on heavy target
● Re-purpose buncher & accumulator to control π ⇒ μ 

evolution into a highly-polarized muon beam
● New muon line delivers 16 bunches/1.4 seconds, ring stores 

10k-16k muons per bunch

● Target: increase overall precision ~4x
– Accumulate ~20x BNL statistics in 400-500 days 

of continuous running

– Reduce systematics through ring & detector 
upgrades
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Installing the Ring
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Muon Storage and Spin Precession
● ~14m diameter NbTi superconducting coils: 

~4kA  ⇒ 1.45 Tesla
● fine-tuning via wedges, shims, and correction 

coils (~3x more uniform for Fermilab g-2)
● vacuum chambers & electrostatic quadrupoles: 

beam integrity & focus
● muon storage region: 9cm diameter channel 

defined by circular beam collimators

ring/magnet cross section

vacuum chamber model (and photo showing electrostatic quadrupole plates)
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Muon Storage and Spin Precession
● spin precession frequency (relative) in B dipole field (1.45T) and E quadrupole field (~20kV)

● quads introduce extra precession term

– ~cancel by running at the ‘magic momentum’ 3.09 GeV/c

– this and B field sets the orbital radius to 7112cm

● precession period ~4.4μs (boosted muon lifetime ~64μs)

(*using           )

Beam storage systematics  
● Muon bunch not perfectly centered in storage region
● Resulting betatron oscillations introduce other terms
● Vertical/horizontal oscillations affect e+ calorimeter acceptance
● Introduction of tracker was a critical upgrade over Brookhaven
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Detector Systems

● positioned in front of two calorimeters

● 8 modules, each with 4 planes of straws

● angular resolution: extrapolate e+ back to 
storage region & characterize beam 
dynamics

● another significant upgrade over E821

● capture ~1/3 of inward-spiraling positrons

● energy resolution ~ few percent

● segmented design for spatial separation

● improved pileup discrimination is a 
significant upgrade over E821

Calorimeters (24) Straw Trackers (2)



Jun 1, 2018 Fermilab Muon g-2 | Heavy Quarks & Leptons 2018 13

simulated lab-frame energy of 
decay positrons, modulo 4362ns 
anomalous precession frequency 

(E989 TDR)

Anomalous Precession Frequency Measurement

BOOST
CM Frame

pe+ correlated with sμ+

Lab Frame

angular asymmetry maximal for highest-energy positrons

strong pe+ precession

4.4 "
t % μ spin precession period
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Anomalous Precession Frequency Measurement

BOOST
CM Frame

pe+ correlated with sμ+

Lab Frame
strong pe+ precession

angular asymmetry maximal for highest-energy positrons
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Quantifying the Precession
● Measure the wiggles!

● 1st order: time-binned positron hits above E threshold 
(~1.8GeV)

● redundant calibrations & reconstruction algorithms protect 
against bugs & other mistakes

● alternatives:

– total energy deposit

– asymmetry-weighting or E-binning (both rely on 
energy estimate)

Fit:

reconstructed e+ above threshold
energy (enhanced wiggle)

total accumulated energy
deposit (more statistics)
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Analysis Systematics

● Some effects directly introduce systematic offsets to the measured anomalous 
precession frequency
– Example: time-dependence in phase
– 1st order shift: 

● Other effects affect the overall shape & degrade fit quality
– betatron oscillation + calorimeter acceptance introduce other modulation frequencies
– many effects controlled directly by modeling terms in fit function

● Multiple factors contribute to ‘apparent μ decay rate’ (exponential)
– pileup & SiPM gain variation skew exponential decay shape
– ‘lost muons’ leak out of the storage region and hit calorimeters
– one approach is very well-suited to control these.
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● Relationship between these three points 
describes both decay and wiggle

– compare y-values differences from left 
& right interval

– separates exponential from oscillation

● We use ‘Recon East’ positrons

● Perform three ‘independent’ fits for all 
datasets

*You may sometimes see U = N+ + N- and V = 2N

Ratio Method
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Ratio Method

R(t)

S(t)

D(t)

=
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Illinois Ratio Method Analysis (IRMA)
● Muon spin precession analysis group
● Fermilab + University of Illinois, Urbana-Champaign
● Named for the ‘Ratio Method’ (but we are not restricted to that)
● Target: analysis of Run 2 data

Sudeshna Ganguly

Manolis Kargiantoulakis



IRMA’s Unique Contributions
● Independently fit three representations of data
● art-to-Python analysis environment
● Unique combination of analysis variety + reconstruction
● Run-by-run fits
● Time-series residuals/pulls analysis

– fit pulls usually seen as an unordered distribution (neglecting left-to-right 
ranking in fit)



Consistent & Independent Fits

function of ALL 
fit parameters

function of ALL fit 
parameters (except 

normalization)

● Functional form includes nearly all parameters in all three fits
– time spectrum:

– note: not yet using A(ωcbo) and other forms as in Nick’s parameterizations

● Ratio and exponential fitting functions call N(t) function at three 
separate times:
– exponential fit function:
– ratio fit function:

● Statistical precision shows expected sensitivities
– huge error bars for e.g. δωa in exponential fit, δτμ in ratio fit

– time-spectrum & ratio fit see roughly equal δωa





Separation of Rate-based Systematics
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Rate deviations 
factored out, non-ωa 

oscillations suppressed
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Muon Loss

● Significant deviation from bulk 
~exponential shape

● Latest mu loss rate from Sudeshna
– triple coincidences

● Multiply model by integrated loss 
count (with scaling factor)

Differential loss rate 
(~muons per unit time)
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Muon Loss Mitigation: Before
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Muon Loss Mitigation: After
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Error Budget

ωa systematics [ppb aμ] BNL Target

gain variation 120 20

e+ pileup 80 40

‘lost’ muons 90 20

betatron motion 70 <30

E field/vertical motion 50 30

Total (quadrature) 180 70

Example breakdown: ωa targets for systematic error

Final g-factor anomaly computed like:

Standard definition of 
anomaly:                        

Our contribution: ratio of anomalous precession 
frequency to proton NMR measurements of B field

Other factors listed with high precision in 
CODATA & other sources:

0.28 ppt

25 ppb

8 ppb

Final E989 Target Precision [as ppb aμ]

precession ωa (syst.) 70ppb

 precession ωa (stat.) 100ppb

B field ωp (syst.) 70ppb

Total 140ppb

Compare to E821’s 
540ppb precision on aμ
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Muon g-2 Software & Computing
● Nature of g-2 shapes computing resources

– quasi-HEP experiment + NMR experiment

– one precession analysis

● Medium-sized experiment
– adopted many Fermilab-native tools

– developers: wide variety of computing & physics backgrounds

– most code written by a few distinct small groups

● I won’t cover everything here!
● Just my personal experience with:

– CVMFS

– code development & release for offline processing & analysis

– interactive access to data in framework files
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CVMFS for Muon g-2
● We have CVMFS mounted on our group VMs, on grid nodes, and in the occasional 

personal VM or container (all SLF6, for now)
– distributes in-house software as well as externals to cover dependencies

● Externals: requirements like build tools, Python interpreter, ROOT, Geant4, etc
● Muon g-2 CVMFS share:

– two people authorized to publish to Stratum-0
– build tool can [de]select packages from CVMFS installation & set up an area for local build to 

replace them
– periodic releases cut from several (17) git repositories

● Online & Offline: supplies code for offline running, but also hosts installations of online 
code (DAQ, quality monitoring) for offline compile-time & run-time dependencies

● Our user experience with CVMFS has been excellent
● Use with a VM: great for times when WiFi is far away.
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CVMFS for Muon g-2
● We have CVMFS mounted on our group VMs, on grid nodes, and in the occasional 

personal VM or container (all SLF6, for now)
– distributes in-house software as well as externals to cover dependencies

● Externals: requirements like build tools, Python interpreter, ROOT, Geant4, etc
● Muon g-2 CVMFS share:

– two people authorized to publish to Stratum-0
– build tool can [de]select packages from CVMFS installation & set up an area for local build to 

replace them
– periodic releases cut from several (17) git repositories

● Online & Offline: supplies code for offline running, but also hosts installations of online 
code (DAQ, quality monitoring) for offline compile-time & run-time dependencies

● Our user experience with CVMFS has been excellent
● Use with a VM: great for times when WiFi is far away.

.or when in a concrete pit!
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‘Off-Label’ Use
● Serve as a text file ‘database’ (calibration constants, etc)

– NOT exactly recommended for calibration constants (but works great if you 
need it to!)

● Online/DAQ operations: very convenient for quick software deployment
– not possible to track clients, which matters during breaking upgrades (lots of 

people forgot they were getting libXYZEtc from CVMFS)

● Lots of other convenient corner cases not targeting Offline purposes
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Code Development & Release
● We have 20-25 git repositories with different purposes.

– official ‘Offline Releases’ include 17 interdependent repos

– 10-20 active developers (<10 very active)

● History has driven evolution of code
– Summer 2016: SLAC testbeam run (calorimeter)
– Summer 2017: Ring/Beam Commissioning

– Winter-Spring 2018: Physics Run 1

– Spring-Summer 2019: Physics Run 2

– Summer 2018-present: Run 1 Analysis

– Near future (post Run 1 Analysis)

Run 2 release every two weeks
Run 1 release as-needed

Release as-needed

Releases not critical

Release every ~month
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Code Repositories

NOT shown: ~half a dozen ‘non-release’ packages

mrb!
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Flexible & Responsive Release Management
● Adapt! (primary customer changes over time, as well as core product)

● Need intuition for the growth & stability of the codebase

● Regular or irregular releases?  Depends on experiment’s growth phase!

● Flexible coding conventions, development cycle recommendations

● CRITICAL for good administration of g-2 software:
– contact with developers (communication!)

– solicit discussions of code evolution often, keep an eye on important tasks, respond to 
developers’ timelines & priorities

– gauge relative strengths/weaknesses of developers in order to help them efficiently

– keep a Linux expert on hand  ;-)
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art
● art: Fermilab’s event-processing framework, developed in-house

– greatest asset: responsive developer team

● File format is custom specification on a ROOT file substrate: put Data Products 
(arbitrary objects with a system of labels) into a Run, SubRun, or Event

● Events processed through a Module Path, modules append Data Products to  
Event, SubRun, or Run

● Analyzer module base class requires implementation of void analyze(art::Event 
& e) (executes once for each event)

● Data Products accessed by Handle
– requested from Event, SubRun, or Run via templated member GetValidHandle<>()

– specify Module Label, Instance Name, and Process ID
– specify C++ type of Data Product in templated call to GetValidHandle<>()
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Data Inspection
● Accessing file content is nontrivial

● The Only Native (Event-based) Interface to Content: create a new framework 
module and run it!
– implement a new module, build & link to framework stuff, create new config file, 

load/run framework executable, etc

– .and the event-processing software exists in an environment with lots of requirements 
(only specific OSs, exact compiler version enforced, etc)

● Non-framework access is possible through TTree/TBrowser, but this has limitations 
(i.e. unintended use)

● Problem: no spontaneous & interactive route to inspecting contents of data files
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Refactor: art, canvas, gallery

art
Framework

Services/Modules
Other Overhead

Event Loop
File I/O

Data Products

art
Framework

Services/Modules
Other Overhead

Event Loop
File I/O

canvas
Data Products

gallery
Event Loop

File Input (Read-only)

● art developers moved ‘Data Provenance’ 
code to the new dependency canvas

● new package gallery provides similar 
interface:
– native ‘event loop’

– fetch Data Products by handle

– good for prototyping art framework code

– (read-only)

● available via gcc, ROOT macro, or 
Python

● gallery via Python suggests interactive 
inspection of data
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heist!
● Bare Python interface is clunky, so heist Python module wraps gallery interface generated 

by PyROOT

● A heist script is analogous to a single module directly fed art Events from file
– event loop, data product handles, dereference art::Ptr() (smart pointer to another data 

product), easy to skip events with no matching entries

– .plus the introspection/reflection awesomeness of Python!

● Includes some extra useful tools:
– list Data Products in a file, search by simple match, and a magic ls() function to describe Data 

Products (and lists of them)

● I use heist nearly exclusively, and we use it in the analysis group I lead

● Others in Muon g-2 have started to pick it up

● Almost ready to advertise to other experiments
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and it works in a Jupyter notebook!
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Path Toward Results
● Run 1 analysis is wrapping up & targets first publication within a 

few months
● Run 2 production starts in earnest soon
● IRMA group uniquely targets Run 2
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Illinois Ratio Method Analysis (IRMA)
● Muon spin precession analysis group
● Fermilab + University of Illinois, Urbana-Champaign
● Named for the ‘Ratio Method’ (but we are not restricted to that)
● Target: analysis of Run 2 data

Sudeshna Ganguly

Manolis Kargiantoulakis
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Final Notes
● Muon g-2 are happy CVMFS customers!

– does exactly what is advertised, no headaches

● Zen of computing: it’s really about people (not computers)
– true for our software, and true for Fermilab’s support (art, etc)

● Scientific computing designs make assumptions about data (content, 
format/type, sizes) but should also assume
– unexpected variation in data

– a human will need to inspect the data at various points
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CernVM FileSystem (CVMFS)
● POSIX read-only user-space filesystem (FUSE)
● Optimized for distribution of program files!

– low-latency, on-demand directory listing & single-file access
– entirely HTTP
– aggressive caching
– easy parallelization for computing grid nodes

● Accessible at data centers worldwide (“already there” for FermiGrid and many other computing 
facilities)

● Lots of handy features
– low-maintenance

– easy to publish files, revisioned filesystem image with named tags
– stability on client (no FUSE problems, always mounts & unmounts cleanly, handles network outages well)

– distributed mirroring (provided setup of certain networks)
– good configurable parameters for clients, but defaults are well-chosen!
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CVMFS

Graphic from S. Fuess
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CVMFS Strengths & Limitations
Strengths      

● Excellent for program files

● Absurdly stable

● Bandwidth efficiency

● Easy to scale on grid (HTTP caching)

● No concurrency issues

● Easy client installation & configuration 
(c.f. NFS, Samba)

● Unexpected shutdown precipitates no 
issues due to journaling, etc

Limitations      
● Read-only, not easy to track clients*

● Scalability like Muon g-2 has seen requires 
setup of Stratum-1 network & HTTP grid 
caching, some coordination with remote 
processing sites

● Can be finicky about file permissions

● Does not like >200k entries in the same 
volume*

* More design choice than limitation
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Timeline
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June 2017 Commissioning Run
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Production Run 1
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Data Accumulation This Year

NOTE: no quality
cuts here
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Code Development
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Run 2

Physics
Run 1

Physics Run 1 Analysis Effort
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Correcting Precession Frequency Systematics

PRELIMINARY

Systematics analysis of Production Run 1 (April 22-25) using ~a billion 
positrons (~10% final BNL dataset)

FT residuals from naive fit
show other frequencies
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Correcting Precession Frequency Systematics

PRELIMINARY

Extend fit form to model vertical/horizontal betatron oscillation, lost muon CBO 
frequencies, and other effects
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Field Monitoring

378 fixed NMR probes (stability 
monitoring)

NMR probe ‘trolley’ (measurements within storage 
region & cross-calibration of fixed probes)

~3x more
uniform magnetic field

than E821 @ BNL
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Calorimeters
● 6x9 array of PbF2 crystals (2.5cm x 2.5cm)

● Cerenkov shower from positron (and secondaries)
● readout via SiPMs
● fast recovery in readout electronics
● digitized @ 800MHz

– <5ns time separation in a single crystal

● energy resolution scales as 1/sqrt(E)
– 5% at 1GeV, 2% at 3GeV

● SiPM gain monitored via laser calibration
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Straw Trackers
● 4 layers of aluminized mylar straws filled with 

Ar:ethane
● critical for reducing calorimeter reconstruction 

systematics
● reconstruct muon distribution during runtime 

(         )
● monitor horizontal & vertical beam oscillations 

in storage region

reconstructed muon beam distribution
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