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2= Fermilab

Fermilab is America's particle physics and accelerator laboratory

We bring the world together to solve the mysteries of matter, energy, space and time.

Origin of Universe

Unification

of Forces

fic

New Physics

. Deep Underground Particle physics Accelerator science and Detectors, computing
= Neutrino Experiment technology and quantum science
<

Fermilab hosts DUNE and the Long- Fermilab explores the universe at the Fermilab designs, builds and operates Fermilab pioneers the research and
¢ Baseline Neutrino Facility, being built smallest and largest scales, studying powerful accelerators to investigate development of particle detection
((\ by scientists and engineers from more the fundamental particles and forces nature's building blocks, advancing technology and scientific computing

Fl‘ontie( The 006 than 30 countries. that govern our universe. technology for science and society. applications and facilities.
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2= Fermilab
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Neutrinos at NOvA

Near Detector

100 m below service
1 km from NuMI

Far Detector

On surface
810 km from NuMI

Ne etector
dm X 4m X 16m
214 Planes

0.3 kt, > 20,0000 channels

14 kt, > 344,000 channels

I
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Example: NOvA Reconstruction

Single particles are separated
using geometric reconstruction
methods.

Inter.

.
-
..
B Cluster 2
action ‘n. R B
rlex ....

Ve

Cluster 3

"l
-._-
Cluster 1

v

Classify particles using full

Prong;: Context: Prong: Context:
Side view Side view Top view Top view
= — — =
—_— — — —

— — | — —

E — — =

event topology from both views —
as well as reconstructed cluster

information (4 views)

2% Fermilab

https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1703.03328

Performance improvement
equivalent to 4.2 kilotons
of additional detector

mass with traditional
particle identification
algorithms.



https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1703.03328

2= Fermilab
NOvVA: what did the network learn?

v, NC

v one

v, CC COH

{v. CC DIS

{v, CC RES

{v. CC QF

{v, CC COH

{v, CC DIS

v, CC RES

v, CC QE

v, CC COH

v, CC DIS

v, CC RES

v, CC QE

t-SNE projection of final features to 2D.
Truth labels, training sample subset.



MBOONE: semantic segmentation

Liquid Argon Time-Projection Chamber detector

Input Tensor

£  MicroBooNE

Simulation U— Re S Net

512X 512X 1

Concatenation of 512 x 512 x 512 tensors
convolutions

at all spatial dimensions

N\

O
i

3 m Intermediate High spatial resolution inf
o 512 x 512 X 64
512 \ Concatenation of tensors

(64, 128, 256, 512)

Repeat
1/2d0wn_samp1ing AEEEE N NN NN EEEEEEEEEEEEEEER lll) X2up_sampling
+ ResNet convolutions + ResNet convolutions

J

16

3./

Intermediate
(most contracted)
16 X 16 x 1024

Output Tensor

MicroBooNE
Simulation

512X 512X 3

=

Repeat

/ 512

convolutions

Intermediate
512X 512x 64

2% Fermilab

https://arxiv.org/abs/1808.07269

Track-like
Shower-like Truth label

K.E.. =341 MeV
K.E.p =161 MeV

MicroBooNE
Simulation
Preliminary

MicroBooNE
Simulation
Preliminary

Encoder-decoder network pixel-wise classification of track/shower/background



https://arxiv.org/abs/1808.07269
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Large, integrated systems and operations

Long Baseline Neutnno NuMI-MINOS

Facility v, Hoaster Neutrino Beam (120 GeW)
(60-120 Gey)  *», Heam (8 GeV)
- Muon Campus .
Linac (400 MeV)
" Main Ini ¥ Booster (8 GeV)
Main Injector :. . _
e Yo .~ -~ Switchyard
~ “ »
' PIP-Il linag \\ (120 GeV)
Rtb‘fdet 4 (08 Gc\ﬂ rQ
(8 Gew 4 ) ‘
a Tevatron (1TeV)
! defunct since 2011 |

10



2% Fermilab

At the energy frontier Fermilab on Compact Muon Solenoid
SRS, experiment at the LHC
S g Broad range of physics from
y g ohi = 0.548 the Higgs boson to dark matter
displaced

tracks charged
lepton

H(bb) jet
] P2 |

Jet 1, I 5

| = 2.36 TeV -

ieﬁta=-o.1sg .. P

| phi = -2.885 ' PV

jet
New deep learning techniques to identify the Higgs

OMS Expermen! st LHG,GERN ,\L' boson in dense, energetic decays to bottom quarks

11
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Example: Identifying the Higgs

ConviD CMS simuiation Preliminary 2016 (13 TeV)
l'l’aC/( (60, 8) (2 /ayers (60, 32) GRU (50) a 10 : T | T | T | L | 0T | T T 0T T T | T | T T __
features " | s2razunis ' L ounts, ) ' S [ 800 < jetpr <2000 GeV
dropout = 0.1) podt =L ;; | 40 < jetmgp < 200 GeV
Fuy | [OUtPUt % | —— DeepDoubleBL, AUC = 97.3%
connected @) - double-b, AUC = 91.3% B
H(bb) , 3%
seconaary -, ConviD | GRU ) Hico) £ | ]
vertex —— | Poes |=| couns | T | (o S
’ — units, +— u u =
features dropout = 0.1) dropout = 0.1) dropout = 0.1) é) 2x effl CIen cy gal n Over
1071 2 —
- shallow ML techniques! :
jet-level ) . i i
features . .
1072 —
10—3 | 171 1| | | 1 1 1 | | 1 1 | | 1 1 1 | | 1 1 | | | 1 1 1 | | 1 1 | | [ 1 1 1 | I I | | | 1 1 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 10
Tagging efficiency (H — bb)
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Example: Identifying the Higgs

ConviD CMS simuiation Preliminary 2016 (13 TeV)
traCk _>(60, 8) (20 /ayel’ S _’(60’ 32) GRU (50) a 1 O : 1T | T | 1T | T | 1T | 1T 11 T | 1T | 1T __
features 32+32 units, ot T G | 300< jetpr <2000 GeV
dropout = 0.1) PO = = | 40< jet mgp < 200 GeV
Fuy | - |OUPUt % [ —— DeepDoubleBvL, AUC = 97.3%
connected ; o - double-b, AUC = 91.3% y
(bb) ,
seconaary -, ConviD | GRU ) Hico) £ | ]
vertex ——— | Clavers l—— | n s | —> (1 layer, QCD =
- 32+32 units, dropout 0’ 1) 100 units, S = = n
features dropout = 0.1) pout = & dropout = 0.1) é’ 2X efﬂClency gain over
101 2 -
- shallow ML techniques! :
jet-level ) . i i
features i i
R CMS Simu(ation Preliminary | | 2016 (13 TeV) i 1
§ = l | | | 30(|) < Jet plT <200(|) GeV _;
E 3 40 < jet nls[, .< 209 GeV E - .
S d@correlation: o
© 1 5.0% mlstzgg::g :::z _E :_ _:
15 - 1 teach the network how : :
: — - to notlearn certain : :
- - physical features; - ‘
: - important for controlling
:_ ; . i f — | 171 1 | [ 11 1 | | 1 1 [ 11 1 | | 11 1 | [ 11 1 | | 1 1 | [ 11 1 | | 1 1 | [ 11 1
g f systematic uncertainties 1000 041 02 03 04 05 06 07 08 09 1.0
4(3 | 6|O | 8|0 | 1(|)O | 1£O | 14!'0 | 1é0 | 1E|30 | 200 Tagging effiCienCy (H % bb)

Msp [GeV]

12



2 Fermilab
Low power, low latency, high radiation, real-time

Example: CMS processing chain

~1 PB/DAY 0,‘3‘\\(\6

‘ 4 40 MHz

5’/

Resource constraints: massive data rates, on-detector low-latency processing
Extreme environments: low-power, cryogenic, high-radiation

13



af Fermilab
Al In the Sky: Elements of Cosmic Experiments

Every main element of
future cosmic experiments
will be accelerated by Al.

Data: Millions of sky pointings (=2D)
Task: Optimize schedules over days and years
Task: Control the telescope and associated devices

Watching the sky |

Simulating the Universe

Data: Trillions of particles in
databases (=6D)

Task: Recreate motions of
particles under gravity,
hydrodynamics

Data: Billions of objects in
Images (2D) and Spectra (1D)

Task: |dentify and measure
objects in noisy data

Task: Separate data structures

Task: Recreate observational
Into components

noise elements in projected
images of web

14
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“It’s full of stars”: find all the objects

_Big astronomical data opens discovery spaces ‘

Large Synoptic Survey Telescope

3 _-‘ FUture (2023)

e | SST:
Optical Images,
Chilean Andes

20 Tb / night

* Populations of objects show dark matter, dark energy
Example: Strong Gravitational Lenses (right)

* Pursuing Region-based CNNs on heterogeneous compute
devices for measurement of objects

1 Billion transient
alerts per night

 10B galaxies, 10B
stars over 10 years

15
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Read between the layers: decompose microwave maps

Observed (Q, U) Reconstructed (E, )
' < v 1 il & o & R Iﬂ;
! - R gl Y
50 | e & ol ; '-.-j '1 -5 20 _ |.-‘ "-n B :1 |
; -.. m-,‘ L L - .,l - _05 k;"" ; ‘J“b.’:; b
i = -..:, ‘c-' [ 4o 'h&.-"_f - "1.,-_-; | ~10
I :Ir .. -__l_ I15 [ ."p'l-‘ o : i i__ I20
il il il ResUNet v g &
ot 7 ] pK > >< i /{. -
- ,"" t i 3 liz '. ,1""‘.' e W ] Io.z
* South Pole Telescope (SPT): OSSR Sl prsaieTpn R Al
Polarized cosmic microwave "IN RN | Tl st ien s |,
background maps o A megavy [ ipasr et B
» Earliest gravitational wave RS R At ' I TR [
signatures that have very low L o ) ; e Ty
signal
* Applicable for CMB-S4 next * Noise and other foregrounds obfuscate primordial GW signatures
generation experiments * Pioneered use of Residual UNets to separate lensing signals (k) from

CMB polarization map (E)

16 Caldeira, Nord, et al., https://arxiv.org/abs/1810.01485


https://arxiv.org/abs/1810.01483
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Big datasets

LHC Science Facebook

data uploads SKA Phase 1 —
~200 PB 180 PB 2023
~300 PB/year
Google science data

searches
98 PB

LHC — 2016
50 PB raw data

Google
Internet archive Yearly data volumes

~15 EB
HL-LHC — 2026

~600 PB Raw data

SKA Phase 2 — mid-2020’s HL-LHC — 2026
~1 EB science data ~1 EB Physics data

17



HEP and Al

* Al techniques accelerate discovery science
* Applications across the grandest challenges in physics

* Key HEP technologies

* Requirements for real science including high-fidelity simulation, uncertainty
guantification, new learned representations

* Advanced sensors and real-time systems
* Controls and operation of large, integrated detectors and accelerators
* Large datasets for training and processing

18
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Outline

19

Fermilab through the lens of Al
scientific mission
enabling technologies at the bleeding edge

Capabilities and opportunities
Al development for HEP
opportunities to share and collaborate
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Fermilab Al Capabilities

Theory and
new algorithms

Accelerate Discovery
Science

Operations and

control systems

20

2= Fermilab

Computing hardware
and infrastructure

Real-time, on-detector

systems
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Fermilab Al Capabilities

COPROCESSORS FOR FAST INFERENCE
LEARNING ON GRAPHS

Theory and - Computing hardware

new algorithms and infrastructure

PHASE-SPACE INTEGRATION :
Accelerate Discovery his%ml

Science CoDesigN ASICs

Operations and FAST AcCCeLERATOR CONTROL Real-time, on-detector

control systems systems

SMART TELESCOPES

21



Beyond images

Theory and

new algorithms

Sparse, multi-modal, high-dimensional

HB@<

Three
Wire Planes

A > y
¥ e S s, 4

X=25m

{ Drift Time = X position A

Cathode @ 70 kV Electric Field

(plate) ~270 V/cm

22

A

ur ¢€°¢

| Charge collected
by wire plane

Scintillation Light
detected by PMTs

Anode
(wire plane)

https://arxiv.org/pdf/1612.05824.pdf

Compact Muon Solencid

2= Fermilab

x,y,z,E,t,id,0,...}



https://arxiv.org/pdf/1612.05824.pdf

2= Fermilab

How to process 40 million of these per second?

—— Tracks and clusters clearly
- f . Q, - / . .
R—— T identifiable by eye throughout
new algorithms R & R v T L

most of detector.

Computing hardware
and infrastructure
Real-time, on-detector rint
systems ik
. . '
CMS.,| CM@ Experiment at LRC, CERN n
., Data recorded: Thu Jan 1 01 :00: 1 0 CEST -
. Run/Event: 1/ 10 ’

the longituding| shower footp

}“‘“ ~—" | Lumi section: 1

b 4

23
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Beyond images
* Multiple activities into learning new representations of detector data for
different physics applications

* Explore neural network architectures based on point clouds and graphs; n-
dimensional inputs in non-Euclidean space

* Promising first results for multiple applications
* Learn the strength of connections (edges) between nodes
» Charged particle tracking [1]
* Calorimetry for irregular geometries [2]

24 [1] https://arxiv.org/abs/1810.06111 , [] https://arxiv.org/abs/1902.07987


https://arxiv.org/abs/1810.06111
https://arxiv.org/abs/1902.07987
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Beyond images

Tracking
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25 [https://heptrkx.github.io/], [https://github.com/exatrkx]


https://heptrkx.github.io/
https://github.com/exatrkx

Beyond images
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Theory and

new algorithms

. Clustering

Correct no
False signal (E = 0.78)
False noise (E = 1.60)

ise (E = 12.33)

Correct signal (E = 837.91)

[
o
50 1 Correct noise (E = 12.33)
False signal (E = 0.78)
False noise (E = 1.60)
Correct signal (E = 837.91)
40 \ '
/ /
'8 301
S,
| -
)
>
(G 20+
—
10
O_

—-150

-100

-50

50 100

x [cm]

150

—200 —-100 0 100 200


https://heptrkx.github.io/
https://github.com/exatrkx

Teaching a computer to integrate

2= Fermilab

Theory and
new algorithms

» Simulations are vital piece of physics experiments — encode our knowledge
* Needs for both more efficient and more accurate simulations

26

I I I I I I I I l. I .l I 1 1 1 ] 1 1 1
- ATLAS Preliminary
100 . CPU resource needs

-

80 2018 estimates:
- v MC fast calo sim + standard reco

o MC fast calo sim + fast reco

60 . Generators speed up x2

- — Flat budget model
- (+20%/year)
40—

Annual CPU Consumption [MHSO06]

201

l I

I

l

I

\’
< —_
| L 1 1 | L 1 1 | |

| |

e T T T R
2018 2020 20

20 2024 2026 2028 2030

1 I |
2032

Year

Growing computing needs

[https://indico.cern.ch/event/849141/]

CPUh/Mevt

105 —

—&— parton level

10° F
: —®—  particle level

: —e— nparticle level
10* 3 WTA (> 6j)
10?
102

10'

10° . W++jets, LHC@14TeV
; pr; > 20GeV, |n;] < 6

10—1 !

" Sherpa / Pythia + DIY @ NERSC

0 1 2 3 4 5} 6 7 8 9
Njet

Compute scales with accuracy


https://indico.cern.ch/event/849141/

af Fermilab
Teaching a computer to integrate

* Importance sampling: to produce simulated events efficiently — learn the
correlated, high-dimensional space
» Simulating N particles in a (3N - 4) dimensional space

........... Neural Importance Sampling
A normalizing flow models a complex

/ N probability density as an invertible
\ o permutation J» x’ transformation of a simple base density.

https://arxiv.org/pdf/1505.05770.pdf
https://arxiv.org/pdf/1808.03856.pdf
"""""" https://arxiv.org/abs/1906.04032

27 [https://indico.cern.ch/event/849141/]


https://arxiv.org/pdf/1505.05770.pdf
https://arxiv.org/pdf/1808.03856.pdf
https://arxiv.org/abs/1906.04032
https://indico.cern.ch/event/849141/

af Fermilab
Teaching a computer to integrate

* Importance sampling: to produce simulated events efficiently — learn the
correlated, high-dimensional space
» Simulating N particles in a (3N - 4) dimensional space

Target Distribution: After 200 epochs:

loss = 2.640339e-02

First study shows 6x speed-up
for simple ete- = 3-jet final state
topology

28 [https://indico.cern.ch/event/849141/]


https://indico.cern.ch/event/849141/
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Big datasets

LHC Science Facebook

data uploads SKA Phase 1 —
~200 PB 180 PB 2023
~300 PB/year
Google science data

searches
98 PB

LHC — 2016
50 PB raw data

Google
Internet archive Yearly data volumes

~15 EB
HL-LHC — 2026

~600 PB Raw data

SKA Phase 2 — mid-2020’s HL-LHC — 2026
~1 EB science data ~1 EB Physics data

29
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Big datasets

42 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread

Performance
(SpecINT x 103)
Google
Internet Frequency (MHz)

Typical Power
(Watts)

Number of
Logical Cores

S0 4 AN 2HNE MNP ¢

1970 1980 1990 2000 2010 2020
Year

Original data up 10 the year 2010 collected and plotted by M. Horowitz, F. Labonte, O, Shacham, K, Olukotun, L. Hammond, and C, Batten
New plot and data collected for 2010-2017 by K. Rupp

29 a
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Computing infrastructure and hardware

ASICs Advances in

TIL heterogeneous computing
driven by
machine learning and big
data explosion

& XILINX

AAAAAAAAAAAAAAAA

/ \
NVIDIA. , PC|I >
GPU CLOUD — - g EXPRESS'
T — UltraSCALE™* -3
2‘\\ \ = Gen 4
- % - = ="' S
3 = /e’ﬁt
> &‘Slb )
- 2 Y \QP % .

T <
& A12 U

BIONIC o
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af Fermilab
Complex and massive datasets

* Big science requires both high-performance and high-throughput compute
* Translation: accelerated computing technologies for training and inference

* Proof-of-concept study for high-throughput

* |n collaboration with Microsoft and many university partners,
FPGA acceleration of machine learning inference in the cloud and the edge
* https://arxiv.org/abs/1904.08986

Fermilab-led team tests Azure Al

for particle physics data challenge =~ — A/ \ N — —

story

31


https://arxiv.org/abs/1904.08986
https://customers.microsoft.com/en-us/story/724137-fermilab-led-team-tests-azure-ai-for-particle-physics-data-challenge

Complex and massive datasets

2= Fermilab

Computing hardware
and infrastructure

» Study found 30x (175x) speed-up for cloud (edge) inference of ResNet50

over experimental software framework

! Worker Node } —

 JetlmageProducer | S~ =

) Sl ke Brainwave Service
Worker Node ]_ EEEE

 JetlmageProducer THHN

Worker Node
 JetlmageProducer

Azure Cloud Datacenter @ VA
or
On-premesis

CMS datacenter @ FNAL

32

Non-disruptive integration
of heterogenous computing
resources into HEP
computing model
Deploy as a service (many
CPUs to few FPGASs) can be
more cost-effective

Exploring applications across
many experiments
(LHC, neutrinos, cosmology;
gravitational waves)



af Fermilab
Complex and massive datasets

» Study found 30x (175x) speed-up for cloud (edge) inference of ResNet50
over experimental software framework

Non-disruptive integration
of heterogenous computing

1000

@® Azure ResNet-50 GPU resourci_s Into HdE||3
A TF ResNet-50 GPU computing moade
°o0” V TF ResNet-50 GPU (train) Deploy as a service (many
R P S CPUs to few FPGAs) can be
N 600- A A more cost-effective
0 A
O g@ Batch-of-1 FPGAaaS
% a00 A comparable (or better) to
= A directly connected GPU! Exploring applications to other
A y vV VY VvV V V experiments (neutrinos,
e © © © o o cosmology, gravitational
| | | | | | waves), and exploring
20 30 40 50 60 70 80 accelerated training

Batch size

33



a¢ Fermilab
Real-time, on-detector systems

Real-time, on-detector

systems

 Resource-constrained Al
* Low-latency, low-power, high bandwidth
» Cryogenics, high-radiation

34



a¢ Fermilab
Real-time, on-detector systems

Real-time, on-detector

systems

 Resource-constrained Al
* Low-latency, low-power, high bandwidth
» Cryogenics, high-radiation

LHC at CERN
40 MHz collision rate, ~20 hrs/day

Compact Muon Solenoid (CMS)
— > 1 billion channels |

......
..........
4 ™

35



CMS data processing chain

Compute Latency

2= Fermilab

1 NS

36

1 ms

1 kHz
1 MB/evt

—

1S

ox’\\"“e




CMS data processing chain

~ PB

Compute Latency

-1 PB/DAY

2= Fermilab

1 NS

A 4 40 MHz

ReAL=TIME ON=DETECTOR Al

36

1 ms

1 kHz
1 MB/evt

1S




2% Fermilab

ML in the hardware trigger

* hlsdml — open-source automated translation tool, ML models to firmware

< https://fastmachinelearning.org/hls4ml
eras

TensorFlow
PyTorch
/ v. h I 4 I Co -processing kernel

model
compressed
model o HLS
conversion
Custom flrmware
: : de5| n

Usual machine learning - 7‘ g
software workflow

tune conﬁgurahon
precision
reuse/pipeline

37 featured Xilinx case study!



https://fastmachinelearning.org/hls4ml
https://www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf

ML in the hardware trigger

[https://arxiv.org/abs/1804.069135]

» All FPGA design

* Flexible: many algorithm types for layers of processing

* Application and adoption growing across the LHC

* Firmware in hours instead of weeks/months

* Growing interest with many on-going developments
* CNNs, Graphs, RNNs, auto-encoders, binary/ternary

* Alternate HLS (Intel, Mentor, Cadence)
* Co-processors, multi-FPGA

* Intelligent ASICs

38

> 5000 parameter
fully connected
network in 100 ns

2= Fermilab

1e3 his4ml 3-layer pruned, Kintex Ultrascale

—#— Reuse Factor =1

6 1 —=— Reuse Factor = 2 Max DSP
e == REUSE FACIOr = 3 m o= o o o o o o o o o o o o o o o e o o e e
> —=— ReuseFactor=5 = p—a—u—u—n—=u

—#— Reuse Factor =6

—#— Reuse Factor =4

4_
o
A
3_ H
lllll
2_ Ji—l
lllll
lllll ./II' |
1 e
0 * 1 1 1 1
<8,6> <16,6> <24,6> <32,6> <40,6>

Fixed-point precision

— Implentation reuse=1
— Implentation reuse=2
| — Implentation reuse=3
— Implentation reuse=4
Implentation reuse=5

e—e |mplentation reuse



https://arxiv.org/abs/1804.06913
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ML in the hardware trigger otetmt s nes, e s
[https://arxiv.org/abs/1804.06913] zE E Egggzg““'“MEX'ES'P“““/E“
* All FPGA design oo
* Flexible: many algorithm types for layers of processing R Ve
iﬁ seseass
* Application and adoption growing across the LHC | S =
* Firmware in hours instead of weeks/months

* Growing interest with many on-going developments
* CNNs, Graphs, RNNs, auto-encoders, binary/ternary
* Alternate HLS (Intel, Mentor, Cadence)
* Co-processors, multi-FPGA
> 5000 parameter

* Intelligent ASICs fully connected
network in 100 ns
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his4ml...4asic?

Hardware acceleration with an emphasis on co-design and fast turnaround time

First project: Autoencoder with MNIST benchmark (28 x 28 x 8-bits @ 40 MHz)

Original
data Encoder
: ‘ Decod
nghd Reprogrammable E m—)
SRS weights
Rate: 40MHz l drivers - Comp.re.ssed data , Reconstructed data
- Efficient bandwidth usage
reconfigurable -  Reduced power consumption (data transfer)

Enable edge compute : e.g. data compression

Programmable and Reconfigurable: reprogrammable weights

Hardware — Software codesign: algorithm-driven architectural approach
Optimized Mixed signal / Analog techniques: Low power and low latency
for extreme environment (ionizing radiation, deep cryogenic)
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Hardware acceleration with an emphasis on co-design and fast turnaround time
First project. Autoencoder with MNIST benchmark (28 x 28 x 8-bits @ 40 MHz)

Original
data Encoder

High Reprogrammable —) E 2

speed :
Rate: 40MHz l weights Compressed data

drivers

Reconstructed data

- Efficient bandwidth usage

reconfigurable -  Reduced power consumption (data transfer)

Enable edge compute : e.g. data compression

Programmable and Reconfigurable: reprogrammable weights

Hardware — Software codesign: algorithm-driven architectural approach
Optimized Mixed signal / Analog techniques: Low power and low latency
for extreme environment (ionizing radiation, deep cryogenic)
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First tests of 1-layer design
Latency: 9ns
Power (FPGA, 28nm) ~2.5 W
Power (ASIC, 65nm) ~ 40 mW
Area = 0.5mm x 0.5mm
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“Fast” ML for physics and beyond Fast Machine Learning

September 10-13, 2019 at Fermilab

Computing hardware Real-time, on-detector
and infrastructure systems

Accelerating ML in science:

[https://indico.cern.ch/event/822126]

Ultrafast on-detector inference
and real-time systems

- Recent workshop at Fermilab with over 200 - iss v3e)
registered participants & N A P
- Fruitful discussions across physics for common L S
challenges across domains | S

* Discussion also on where interesting
intersections with industry and other fields

Distributed learning

Get involved with the research community!

f a S t m a Ch i n el ea r n i n g- Or g https://indico.cern.ch/e/FML ——
me= O wigus hls 4 ml

|
[m]rEhar
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Operations and control systems

Lon.g.Baseime Neutnno Booster Neutrino NuMI-MINOS
Facility v... Beam (120 GeV)
(60-120 GeV) . Heam (8 GeV)
"o 1 Muon Campus .
—ty ‘ Linac (400 MeV)
A £.é . ~ " Booster (8 GeV)
Main Injector - —
(120 GeV) |/ 2 e So Switchyard
s,
’ 4 PIP-Il linag \\ (120 Gev)
Rew*f / (08 ch, '?
(8 GeV) ) Y
— ! Tevatron (1TeV)
| defunct since 2011 |

Operations and
control systems
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Accelerator controls with reinforcement learning

Operations and
control systems

 Goal to reduce beam losses in Booster

» Solve problem using a ML algorithm on
a custom FPGA board to control the
magnet power supplies (GMPS) —
deploy the hls4ml tool

» Scope is single crate control system
(one board with back-up), but the project
lays the foundation for a more ambitious
future program.

42  G. Perdue (FNAL) et al.

Historical Training Data

Offline Training System

(e.g. Wilson Cluster GPUs)

Magnet Status

Online Training Module
(Fine tuning only)

66.66msec (15Hz)

2= Fermilab

Controller Online (On-
lllllllllll board) Controller ~—> Inference Output
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Self-Driving Telescopes: Control for observations

Precision Machin Control fign
DES 2012 2018 ‘

* Dark Energy Survey:
Optical Images, Chilean Andes

* Terabytes per night

* 500 Million Galaxies, Thousands of
exploding stars

* Competing target requirements and
environment constraints.

Dark Energy SurVey: Sky Foo'tp'rin”t 6f Observations

1 DES 20 DES (SV) B DES (year 1) 1 DES (year 2) DES (SN fields)

Challenge of scheduling on multiple time scales

43  Nord, Yuxin Chen (UC), JTFI award

Long: competition between faint galaxies (green), transient
objects (yellow)

Short: Weather, annual modulation of sky positions
Exploring reinforcement learning for optimal scheduling and
control



Al Capabilities

Theory and
new algorithms

Operations and

control systems

44

Accelerate Discovery
Science
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Computing hardware
and infrastructure

Real-time, on-detector

systems
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Overflow and opportunities

* This talk was a sampling of activities going on in Al at Fermilab and more broadly in HEP

* Some other hot button topics — distributed training, uncertainty quantification, simulation
for physics ...

* Going forward?
* Al at Fermilab — living on the cutting edge to accelerate exciting science challenges
 Built on general Al capabilities applicable to multiple domains

* Fermilab Al program
contact us: ai@fnal.gov, team committed to building the Al community!

* Interested In:
* developing common technologies
* collaborating on similar problems and working with experts in core Al and other domains
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Summary and Outlook

* Al to accelerate discovery science!

* Algorithms
* Beyond Images: higher-dimensional, sparse, multi-modal representation learning
* |Incorporating physics into learning: phase space integration, decorrelation, symmetries

« Massive datasets

* Physics experiments are a excellent case for big data processing
* Streaming real-time high-throughput systems to globally distributed offline compute

» Real-time on-detector systems

* Al-integrated into the hardware filters, inferences at ~100ns
* Applications for edge/loT sensors — low-power, low-latency, cryogenic, and other extreme environments

» Operations and controls
* Improve efficiency of site-wide operations from the accelerator complex to detector control
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Simulations represent theory

We compare simulated universes (blue, upper) to
observed cosmic web of galaxies (red/yellow, lower

Simulations of large-scale structure

P _—
2 .

X

Observations of large-scale structure (galaxies)

* Across time scales: 3 orders of magnitude

* Across spatial scales: 6 orders of magnitude

* With several forces: Gravity, magnetism, hydrodynamics

* A single conventional
simulation >millions

of CPU hours,
generates >petabytes

* We need 1000's of
simulations
(read: theoretical
models) to test
against real data.

—}.

Parameterized
model-assisted
GANSs for image and
particle set generation

Using relationships
between group
symmetries and
convolutions to
speed calculations




