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THE LARGE HADRON COLLIDER �6

proton-proton collider @ 13 TeV center-of-mass energy
4 interaction points

40 million collisions / second
trigger selects ~1000 collisions / second

p p

~10 cm



Neutrinos at NOνA 
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Near Detector
0.3 kt, > 20,0000 channels
100 m below service
1 km from NuMI

Far Detector
14 kt, > 344,000 channels
On surface
810 km from NuMI



Example: NOνA Reconstruction
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https://arxiv.org/abs/1604.01444 
https://arxiv.org/abs/1703.03328  

Performance improvement 
equivalent to 4.2 kilotons 

of additional detector 
mass with traditional 
particle identification 

algorithms.

https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1703.03328


NOνΑ: what did the network learn? 
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μBooNE: semantic segmentation
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https://arxiv.org/abs/1808.07269

High rate environments, as in LArTPCs like the Short
Baseline Near Detector and the DUNE near detector, both
to be built in the not-too-distant future at Fermilab, will
benefit from sophisticated computer vision techniques.
Such techniques, including pixel labeling as provided by
the semantic segmentation approach described here, will
be very useful to untangle neutrino-induced tracks and
showers.

II. MICROBOONE DETECTOR AND
PARTICLE IMAGES

The MicroBooNE LArTPC contains 85 metric tons of
liquid argon in the active region, which is defined by a
rectangular shape with the dimensions 10.36 m in length,
2.32 m in height, and 2.56 m in width along the drift
direction [3], as shown in Fig. 2. The anode consists of
three planes of parallel wires. The first and second planes
contain 2,400 wires with orientations of þ60 and −60
degrees from the vertical, respectively. Ionization electrons
produce bipolar signals on the two induction planes as they
pass through them. The third is called the collection plane
and consists of 3,456 vertical wires. Wires on the third
plane are held at a positive potential and collect ionization
electrons. Wires are separated by 3 mm pitch in all planes,
and signal waveforms are digitized at a 2 MHz sampling
rate and recorded for a duration of 4.8 ms in each event.
Combined wire waveforms, aligned by the digitization

time, form 2D projected images of a three-dimensional
(3D) particle trajectory from a different projection angle.
The digitization time runs along the vertical axis and the
wires run along the horizontal axis in event displays shown
in this paper (e.g., Fig. 1).
In this paper we focus on the analysis of image data

recorded by the collection plane, which has a size of 3,456
by 9,600 pixels. The spatial resolution of an image along
the wire axis is 3 mm per pixel. For the analysis, evebry 6
samples of a digitized waveform are summed together,
corresponding to an approximate spatial resolution along
the time axis of 3.3 mm. The resulting image dimension is
3,456 by 1,600 pixels.

III. U-RESNET: TRACK/SHOWER PIXEL-LEVEL
SEPARATION NETWORK

In this study we use U-ResNet, a hybrid of the U-Net
[15] and residual network [16] (ResNet) design pattern.
This is a natural approach for semantic segmentation and
has been independently explored in other research domains
[17,18]. U-ResNet takes a single-channel 512 by 512 pixel
image as input and outputs an image of the same spatial
dimension with 3 channels per pixel encoding a probability
from multinomial logistic regression, or softmax, for a pixel
being a background, track, or shower type. We use U-Net as
the base SSNet architecture design because of its excellent
performance in biomedical images [15] which resemble

FIG. 3. U-ResNet architecture diagram. Black arrows describe the direction of tensor data flow. Red arrows indicate concatenation
operations to combine the output of convolution layers from the encoding path to the decoding path. The final output has the same
spatial dimension as the input with a depth of three, representing the background, track and shower probability of each pixel.

C. ADAMS et al. PHYS. REV. D 99, 092001 (2019)

092001-4

Encoder-decoder network pixel-wise classification of track/shower/background

Liquid Argon Time-Projection Chamber detector

https://arxiv.org/abs/1808.07269


Large, integrated systems and operations
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At the energy frontier
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Fermilab on Compact Muon Solenoid 
experiment at the LHC

Broad range of physics from 
the Higgs boson to dark matter

New deep learning techniques to identify the Higgs 
boson in dense, energetic decays to bottom quarks



Example: Identifying the Higgs
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• Convolutional layers: used in image recognition, … 

• Recurrent layers: used in language translation, …   

• Reduced set of kinematic inputs to mitigate mass sculpting
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• Large performance gain over BDT

DP-2018/033

2x efficiency gain over 
shallow ML techniques!
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DeepDoubleBvL

94X – Mass Independence

31 October 2018 13

• Trade-off for performance more 
believable than in DPS

• Requires some judgement about 
where to pick the optimal point

D E E P  D O U B L E - B  TA G G E R

!29

• Dedicated “penalty term” based on Kullback-Leibler 
divergence mitigates mass sculpting
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Low power, low latency, high radiation, real-time
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MACHINE LEARNING IN THE HARDWARE TRIGGER  1

Javier Duarte I hls4ml 6

CMS Trigger
High-Level 
TriggerL1 Trigger

1 kHz 
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline

Offl
ine

1 ns 1 us 1 s1 ms
Compute Latency

2 Building neural networks with hls4ml

In this section, we give an overview of translating a given neural network model into a FPGA
implementation using HLS. We then detail a specific jet substructure case study, but the same concepts
are applicable for a broad class of problems. We conclude this section by discussing how to create
an e�cient and optimal implementation of a neural network in terms of performance, resource usage,
and latency.

2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in Fig. 1.
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hls  4  ml

hls4ml

HLS  4  ML

Figure 1: A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such as
Keras and PyTorch, involves a training step and possible compression steps (more discussion below
in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of hls4ml,
which translates a model into an HLS project that can be synthesized and implemented to run on an
FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second at a
relatively low power cost. However, such operations consume dedicated resources onboard the FPGA
and cannot be dynamically remapped while running. The challenge in creating an optimal FPGA
implementation is to balance FPGA resource usage with achieving the latency and throughput goals
of the target algorithm. Key metrics for an FPGA implementation include:

– 4 –

> 5000 parameter 
fully connected 

network in 100 ns!

Example: CMS processing chain

Resource constraints: massive data rates, on-detector low-latency processing
Extreme environments: low-power, cryogenic, high-radiation

~1 PB/DAY

~1 PB/S



AI In the Sky: Elements of Cosmic Experiments
Every main element  of 
future cosmic experiments 
will be accelerated by AI.
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Analyzing GalaxiesSimulating the Universe

Watching the sky Data: Millions of sky pointings (≥2D)

Task: Optimize schedules over days and years

Task: Control the telescope and associated devices

Data: Billions of objects in 
Images (2D) and Spectra (1D)

Task: Identify and measure 
objects in noisy data

Task: Separate data structures 
into components

Data: Trillions of particles in 
databases (≥6D)

Task: Recreate motions of 
particles under gravity, 
hydrodynamics

Task: Recreate observational 
noise elements in projected 
images of web



“It’s full of stars”: find all the objects
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Future (2023)

• LSST:  
Optical Images, 
Chilean Andes


• 20 Tb / night


• 1 Billion transient 
alerts per night


• 10B galaxies, 10B 
stars over 10 years

• Populations of objects show dark matter, dark energy 
Example: Strong Gravitational Lenses (right) 


• Pursuing Region-based CNNs on heterogeneous compute 
devices for measurement of objects

Big astronomical data opens discovery spaces



Read between the layers: decompose microwave maps
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Observed (Q, U) Reconstructed (E, κ)

• Noise and other foregrounds obfuscate primordial GW signatures

• Pioneered use of Residual UNets to separate lensing signals (κ) from 

CMB polarization map (E)

• South Pole Telescope (SPT): 
Polarized cosmic microwave 
background maps


• Earliest gravitational wave 
signatures that have very low 
signal


• Applicable for CMB-S4 next 
generation experiments

Caldeira, Nord, et al., https://arxiv.org/abs/1810.01483

https://arxiv.org/abs/1810.01483


Big datasets

�17

International Data Needs

17

Google	
searches
98	PB

LHC	Science	
data

~200	PB
SKA	Phase	1	–

2023
~300	PB/year	
science	data

HL-LHC	– 2026
~600	PB	Raw	data

HL-LHC	– 2026
~1	EB	Physics	data

SKA	Phase	2	– mid-2020’s
~1	EB	science	data

LHC	– 2016
50	PB	raw	data

Facebook	
uploads
180	PB

Google
Internet	archive
~15	EB

Yearly	data	volumes
DUNE		
2026 

LSST		
2021 



HEP and AI

• AI techniques accelerate discovery science
• Applications across the grandest challenges in physics

• Key HEP technologies
• Requirements for real science including high-fidelity simulation, uncertainty 

quantification, new learned representations
• Advanced sensors and real-time systems
• Controls and operation of large, integrated detectors and accelerators
• Large datasets for training and processing

�18



Outline
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Fermilab through the lens of AI
scientific mission

enabling technologies at the bleeding edge

Capabilities and opportunities
AI development for HEP

opportunities to share and collaborate



Fermilab AI Capabilities
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Computing hardware  
and infrastructure

Real-time, on-detector  
systems 

Theory and  
new algorithms

Operations and  
control systems

Accelerate Discovery  
Science



Fermilab AI Capabilities
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Computing hardware  
and infrastructure

Real-time, on-detector  
systems 

Theory and  
new algorithms

Operations and  
control systems

Accelerate Discovery  
Science

LEARNING ON GRAPHS

PHASE-SPACE INTEGRATION

COPROCESSORS FOR FAST INFERENCE

CODESIGN ASICS

hls4ml

SMART TELESCOPES

FAST ACCELERATOR CONTROL



Beyond images
Sparse, multi-modal, high-dimensional
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v = {x,y,z,E,t,id,δ,…}→
Theory and  

new algorithms

https://arxiv.org/pdf/1612.05824.pdf

https://arxiv.org/pdf/1612.05824.pdf
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2017 JINST 12 C01042

Figure 7. Event display of a simulated high pT jet in the HGCAL with 140 pileup overlayed. Courtesy of
Lindsey Gray [9].

Figure 8. Electron identification e�ciency and fake rate (left) and jet energy resolution (right) in the
simulation comparing current detector with upgraded one in high pileup environment.

– 6 –

How to process 40 million of these per second?
Theory and  

new algorithms

Computing hardware  
and infrastructure

Real-time, on-detector  
systems 



Beyond images
• Multiple activities into learning new representations of detector data for 

different physics applications
• Explore neural network architectures based on point clouds and graphs; n-

dimensional inputs in non-Euclidean space
• Promising first results for multiple applications

• Learn the strength of connections (edges) between nodes
• Charged particle tracking [1] 
• Calorimetry for irregular geometries [2]

�24 [1] https://arxiv.org/abs/1810.06111 , [2] https://arxiv.org/abs/1902.07987

Theory and  
new algorithms

https://arxiv.org/abs/1810.06111
https://arxiv.org/abs/1902.07987


Beyond images
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Encoder Graph 
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Module
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Output 
ModuleH0 H1

Figure 1: The Graph Neural Network architecture used for tracking.

the particle type of the edge can also be encoded and inferred. This can be achieved with a graph
neural network using architectures similar to those demonstrated for tracking as well as networks
where the graph is determined dynamically [14]. Here we will focus on the static graph networks and
demonstrate results for future calorimeters in particle physics experiments [8].

In particular, we have studied the application of message passing networks to the task of calorimeter
clustering, yielding initial promising results. The calorimeter clustering problem is very similar to the
tracking problem except that there may be more than two true edges connected to an input node. We
cast the task of calorimeter clustering as an operation on an initial static graph generated with a simple
algorithm like k-Nearest-Neighbours (kNN), passing messages to generate features for classifying
those edges as true or false. Here we are using kNN as stand-in for a lightweight reconstruction
algorithm as a first pass to generate a graph on the data. The parameter k was chosen such that there
was at least one true edge between all hits in the same truth-level cluster after applying the algorithm.
Smaller k results in lower clustering efficiency, depending on the use of noise suppression k can be in
the range of 8-24. In particular, these networks use the ’EdgeConv’ operator defined in [18], and it
was found that concatenating the intermediate hidden states in the output stage improved the rate of
model convergence by about a factor of two compared to using no such shortcuts. A diagram of the
GNN architecture used for calorimeter clustering is shown in figure 2.

HNH2
Encoder Graph 

Module
…Graph 

Module
Graph 

Module
Output 
ModuleH0 H1

Figure 2: The Graph Neural Network architecture used for calorimeter clustering.

3 Results

The tracking results are based on the TrackML challenge data [17] generated by the ACTS frame-
work [12]. This dataset simulates the very dense environment in the HL-LHC with 200 interactions
per bunch crossing on average.

The GNN is trained on an NVIDIA V100 GPU for about 2 epochs in about two hours, resulting in
the performance showed in figure 3. With a threshold of 0.5 on the GNN output, the edge efficiency,
defined as the ratio of the number of true edges passing the threshold over the number of total true
edges, reaches 95.9%, and the purity, defined as the ratio of the number of true edges passing the
threshold over the number of total edges passing the threshold, is 95.7%. Guided by the GNN outputs,
a simple algorithm is used to reconstruct track candidates. The algorithm makes iterative visits to all
hits from inside to outside and reconstructs a best track candidate for the hit in question. Each hit
is used only by one track so no ambiguity resolving is needed. This step is called “Connecting The
Dots” (CTD). Using the GNN and CTD together reconstructs about 95% of true tracks that can be
reconstructed in the graph across the transverse momentum range from 100 MeV to 5 GeV beyond
which lacks statistics.

Ongoing work in reconstructing tracks with GNNs includes extending the method to whole detector
data and improving the performance of the CTD post-processing algorithm to recover lost efficiency.

3

Theory and  
new algorithms

2.3 Building tracks

For a simple test of these models, we use them to extrapolate and build tracks in low-
occupancy events. We construct a track “seed” using the initial three hits of a true track,
then use the RNN models to make forward predictions and select the closest (or highest-
scoring) hit in the event on each successive layer. An example track which is correctly fully
reconstructed using the simple RNN hit predictor model is shown in figure 7. In this simpli-
fied scenario both models are very good at making predictions for selecting candidate hits.
The resulting hit selection accuracies measured are 99.93% and 99.98% for the simple and
Gaussian models, respectively.

For a proper assessment of these models, a full combinatorial tree search algorithm with
full occupancy collision data should be used. This is currently left for future work.

Figure 7. An example track properly reconstructed using the basic hit predictor model in an event.

3 Track finding with Graph Neural Networks

Another way to represent tracking data with points is as a graph of connected hits. This
is illustrated in figure 8. In this representation, we can apply a powerful class of methods
from Geometric Deep Learning [6] known as Graph Neural Networks (GNNs). The graph
can be constructed by connecting plausibly-related hits using geometric constraints or some
kind of pre-processing algorithm like the Hough Transform. A GNN model can learn on this
representation and solve tasks with predictions over the graph nodes, edges, or global state.

We have developed two applications using Graph Neural Networks. The first is a binary
hit classification model which learns to identify one track in a partially-labeled graph by
classifying the graph nodes. The second is a binary segment classification model which
learns to identify many tracks at once by classifying the graph edges (hit pairs). The inputs to
these models are the node features (the 3D hit coordinates) and the connectivity specification.

3.1 Graph neural network architecture

The architecture we have developed is similar to that of Interaction Networks [7] but is cus-
tomized for our purposes. Two main components operate locally on the graph:

Tracking

[https://heptrkx.github.io/], [https://github.com/exatrkx]

https://heptrkx.github.io/
https://github.com/exatrkx
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3 Track finding with Graph Neural Networks

Another way to represent tracking data with points is as a graph of connected hits. This
is illustrated in figure 8. In this representation, we can apply a powerful class of methods
from Geometric Deep Learning [6] known as Graph Neural Networks (GNNs). The graph
can be constructed by connecting plausibly-related hits using geometric constraints or some
kind of pre-processing algorithm like the Hough Transform. A GNN model can learn on this
representation and solve tasks with predictions over the graph nodes, edges, or global state.

We have developed two applications using Graph Neural Networks. The first is a binary
hit classification model which learns to identify one track in a partially-labeled graph by
classifying the graph nodes. The second is a binary segment classification model which
learns to identify many tracks at once by classifying the graph edges (hit pairs). The inputs to
these models are the node features (the 3D hit coordinates) and the connectivity specification.

3.1 Graph neural network architecture

The architecture we have developed is similar to that of Interaction Networks [7] but is cus-
tomized for our purposes. Two main components operate locally on the graph:

Tracking

Figure 5: x and y projections of edge classification in a pion shower within the CMS HGCal. The
input graph is derived using kNN. The vertical axis in each case is the calorimeter layer number. A
score cut of 0.5 is used to identify true edges in this case and edges are labelled according to being
true positives (yellow), true negatives (blue), false positives (green), and false negatives (red).

for the HGCal. Finally, explorations into deploying these networks for Liquid Argon Time Projection
Chambers are in their initial stages.

4 Conclusion

We have demonstrated that Graph Neural Networks on Point Clouds are suitable for both tracking and
calorimetry in high energy physics, having promising physics performance and good scalability. For
the track finding problem, the GNNs combined with a simple connecting-the-dot algorithm results
in a relative efficiency of over 95% for all particles. Ongoing work is recovering the inefficiency
introduced by each selection. For the calorimeter clustering problem, we have found that very similar
graph network architectures yield promising solutions. In the individual clustering problems used
for testing so far we have found excellent energy collection efficiency, as well as efficiencies and
purities better than 90% even in the most difficult scenarios. The next step will be to connect the dots
as in the tracking algorithms and derive useful physics quantities from the collections of connected
calorimeter energy deposits.
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Figure 1: The Graph Neural Network architecture used for tracking.

the particle type of the edge can also be encoded and inferred. This can be achieved with a graph
neural network using architectures similar to those demonstrated for tracking as well as networks
where the graph is determined dynamically [14]. Here we will focus on the static graph networks and
demonstrate results for future calorimeters in particle physics experiments [8].

In particular, we have studied the application of message passing networks to the task of calorimeter
clustering, yielding initial promising results. The calorimeter clustering problem is very similar to the
tracking problem except that there may be more than two true edges connected to an input node. We
cast the task of calorimeter clustering as an operation on an initial static graph generated with a simple
algorithm like k-Nearest-Neighbours (kNN), passing messages to generate features for classifying
those edges as true or false. Here we are using kNN as stand-in for a lightweight reconstruction
algorithm as a first pass to generate a graph on the data. The parameter k was chosen such that there
was at least one true edge between all hits in the same truth-level cluster after applying the algorithm.
Smaller k results in lower clustering efficiency, depending on the use of noise suppression k can be in
the range of 8-24. In particular, these networks use the ’EdgeConv’ operator defined in [18], and it
was found that concatenating the intermediate hidden states in the output stage improved the rate of
model convergence by about a factor of two compared to using no such shortcuts. A diagram of the
GNN architecture used for calorimeter clustering is shown in figure 2.
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Figure 2: The Graph Neural Network architecture used for calorimeter clustering.

3 Results

The tracking results are based on the TrackML challenge data [17] generated by the ACTS frame-
work [12]. This dataset simulates the very dense environment in the HL-LHC with 200 interactions
per bunch crossing on average.

The GNN is trained on an NVIDIA V100 GPU for about 2 epochs in about two hours, resulting in
the performance showed in figure 3. With a threshold of 0.5 on the GNN output, the edge efficiency,
defined as the ratio of the number of true edges passing the threshold over the number of total true
edges, reaches 95.9%, and the purity, defined as the ratio of the number of true edges passing the
threshold over the number of total edges passing the threshold, is 95.7%. Guided by the GNN outputs,
a simple algorithm is used to reconstruct track candidates. The algorithm makes iterative visits to all
hits from inside to outside and reconstructs a best track candidate for the hit in question. Each hit
is used only by one track so no ambiguity resolving is needed. This step is called “Connecting The
Dots” (CTD). Using the GNN and CTD together reconstructs about 95% of true tracks that can be
reconstructed in the graph across the transverse momentum range from 100 MeV to 5 GeV beyond
which lacks statistics.

Ongoing work in reconstructing tracks with GNNs includes extending the method to whole detector
data and improving the performance of the CTD post-processing algorithm to recover lost efficiency.
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Teaching a computer to integrate
• Importance sampling: to produce simulated events efficiently — learn the 

correlated, high-dimensional space
• Simulating N particles in a (3N - 4) dimensional space
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Complex and massive datasets
• Big science requires both high-performance and high-throughput compute

• Translation: accelerated computing technologies for training and inference

• Proof-of-concept study for high-throughput
• In collaboration with Microsoft and many university partners,  

FPGA acceleration of machine learning inference in the cloud and the edge 
• https://arxiv.org/abs/1904.08986  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FPGA-accelerated machine learning inference as a service for particle physics computing 13

Table 2: A summary comparison of total inference time for Brainwave, CPU, and GPU performance

Type Hardware hInference timei Max throughput Setup

CPU Xeon 2.6 GHz, 1 core 1.75 seconds 0.6 img/s CMSSW, TF v1.06
CPU i7 3.6 GHz, 1 core 500 ms 2 img/s python, TF v1.10
CPU i7 3.6 GHz, 8 core 200 ms 5 img/s python, TF v1.10

GPU (batch=1) NVidia GTX 1080 100 ms 10 img/s python, TF v1.10
GPU (batch=32) NVidia GTX 1080 9 ms 111 img/s python, TF v1.10
GPU (batch=1) NVidia GTX 1080 7 ms 143 img/s TF internal, TF v1.10
GPU (batch=32) NVidia GTX 1080 1.5 ms 667 img/s TF internal, TF v1.10

Brainwave Altera Artix 10 ms 660 img/s CMSSW, on-prem
Brainwave Altera Artix 60 ms 660 img/s CMSSW, remote

Fig. 14: Standalone GPU inference time per image (top)
and images per second (bottom) as a function of batch
size for the TensorFlow o�cial ResNet-50 model com-
pared with the Azure ResNet-50 model. The dashed
line indicates a time of 10 ms, consistent with the on-
prem inference time of the Brainwave system.

GPU comparisons can be more nuanced4, depend-
ing on the model implementation and batch sizes. How-
ever, for a batch of one image, we can say that the

4 For that matter, CPU comparisons can also be nuanced
when considering devices with many cores and large RAM.
However, they do not fit in with the CMSSW computing model.

Brainwave inference latencies, both on-prem and re-
mote including network latencies, are of a similar order
to local, physically connected GPU inference times. The
GPU and Brainwave have similar maximum through-
put, about 660 images per second, though the former
only achieves this with large batch size and the lat-
ter achieves this when accessed with many CPUs si-
multaneously. It should be emphasized that Brainwave
achieves this performance using single-image requests
and including network infrastructure for deployment as
a service, while the GPU requires a large batch size for
the same performance and is directly connected to the
CPU via PCIe (Peripheral Component Interconnect ex-
press). As will be described in Sec. 6, future studies are
needed to better understand the scalability and cost of
di↵erent heterogeneous computing architectures. The
performance of other coprocessors as services, includ-
ing GPUs, is another item for future study.

6 Summary and outlook

The current computing model for particle physics will
not su�ce to keep up with the expected future increases
in dataset size, detector complexity, and event mul-
tiplicity. Single-threaded CPU performance has stag-
nated in recent years; therefore, it is no longer viable
to rely on improvements in the clock speed of general-
purpose computing. Industry trends towards hetero-
geneous computing—mixed hardware computing plat-
forms with CPUs communicating with GPUs, FPGAs,
and ASICs as coprocessors—provide a potential solu-
tion that can perform calculations more than an or-
der of magnitude faster than CPUs. The new coproces-
sor hardware is geared towards machine learning algo-
rithms, which are parallelizable, high-performing even
with reduced precision, and energy e�cient. Therefore,
to best utilize the new computing hardware, it is im-
portant to adopt machine learning algorithms in par-
ticle physics computing. Fortunately, machine learning
is very common in particle physics, from simulation to

Batch-of-1 FPGAaaS 
comparable (or better) to 
directly connected GPU!



Real-time, on-detector systems

• Resource-constrained AI
• Low-latency, low-power, high bandwidth
• Cryogenics, high-radiation
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LHC at CERN 
40 MHz collision rate, ~20 hrs/day

Compact Muon Solenoid (CMS) 
→ > 1 billion channels


• Resource-constrained AI
• Low-latency, low-power, high bandwidth
• Cryogenics, high-radiation
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2 Building neural networks with hls4ml

In this section, we give an overview of translating a given neural network model into a FPGA
implementation using HLS. We then detail a specific jet substructure case study, but the same concepts
are applicable for a broad class of problems. We conclude this section by discussing how to create
an e�cient and optimal implementation of a neural network in terms of performance, resource usage,
and latency.

2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in Fig. 1.
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Figure 1: A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such as
Keras and PyTorch, involves a training step and possible compression steps (more discussion below
in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of hls4ml,
which translates a model into an HLS project that can be synthesized and implemented to run on an
FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second at a
relatively low power cost. However, such operations consume dedicated resources onboard the FPGA
and cannot be dynamically remapped while running. The challenge in creating an optimal FPGA
implementation is to balance FPGA resource usage with achieving the latency and throughput goals
of the target algorithm. Key metrics for an FPGA implementation include:

– 4 –

> 5000 parameter 
fully connected 

network in 100 ns!

FPGAs CPUs CPUsASICs

Real-time, on-detector  
systems 



CMS data processing chain

�36

MACHINE LEARNING IN THE HARDWARE TRIGGER  1

Javier Duarte I hls4ml 6

CMS Trigger
High-Level 
TriggerL1 Trigger

1 kHz 
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline

Offl
ine

1 ns 1 us 1 s1 ms
Compute Latency

2 Building neural networks with hls4ml

In this section, we give an overview of translating a given neural network model into a FPGA
implementation using HLS. We then detail a specific jet substructure case study, but the same concepts
are applicable for a broad class of problems. We conclude this section by discussing how to create
an e�cient and optimal implementation of a neural network in terms of performance, resource usage,
and latency.

2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in Fig. 1.
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Figure 1: A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such as
Keras and PyTorch, involves a training step and possible compression steps (more discussion below
in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of hls4ml,
which translates a model into an HLS project that can be synthesized and implemented to run on an
FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second at a
relatively low power cost. However, such operations consume dedicated resources onboard the FPGA
and cannot be dynamically remapped while running. The challenge in creating an optimal FPGA
implementation is to balance FPGA resource usage with achieving the latency and throughput goals
of the target algorithm. Key metrics for an FPGA implementation include:
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2 Building neural networks with hls4ml

In this section, we give an overview of translating a given neural network model into a FPGA
implementation using HLS. We then detail a specific jet substructure case study, but the same concepts
are applicable for a broad class of problems. We conclude this section by discussing how to create
an e�cient and optimal implementation of a neural network in terms of performance, resource usage,
and latency.

2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in Fig. 1.
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Figure 1: A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such as
Keras and PyTorch, involves a training step and possible compression steps (more discussion below
in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of hls4ml,
which translates a model into an HLS project that can be synthesized and implemented to run on an
FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second at a
relatively low power cost. However, such operations consume dedicated resources onboard the FPGA
and cannot be dynamically remapped while running. The challenge in creating an optimal FPGA
implementation is to balance FPGA resource usage with achieving the latency and throughput goals
of the target algorithm. Key metrics for an FPGA implementation include:
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• All FPGA design
• Flexible: many algorithm types for layers of processing

• Application and adoption growing across the LHC
• Firmware in hours instead of weeks/months
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Hardware acceleration with an emphasis on co-design and fast turnaround time
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First project:  Autoencoder with MNIST benchmark (28 x 28 x 8-bits @  40 MHz) 

Enable edge compute : e.g. data compression
Programmable and Reconfigurable: reprogrammable weights 
Hardware – Software codesign: algorithm-driven architectural approach   
Optimized Mixed signal / Analog techniques: Low power and low latency 
for extreme environment (ionizing radiation, deep cryogenic)

First tests of 1-layer design
Latency: 9ns

Power (FPGA, 28nm) ~ 2.5 W
Power (ASIC, 65nm) ~ 40 mW

Area =  0.5mm x 0.5mm

Real-time, on-detector  
systems 



Get involved with the research community!
fastmachinelearning.org

[https://indico.cern.ch/event/822126] 

• Recent workshop at Fermilab with over 200 
registered participants 

• Fruitful discussions across physics for common 
challenges across domains

• Discussion also on where interesting 
intersections with industry and other fields

“Fast” ML for physics and beyond
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Computing hardware  
and infrastructure

Real-time, on-detector  
systems 

https://arxiv.org/abs/1804.06913
https://indico.cern.ch/event/822126


Operations and control systems
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Operations and  
control systems

G. Perdue (FNAL) et al.



Accelerator controls with reinforcement learning

• Goal to reduce beam losses in Booster

• Solve problem using a ML algorithm on 
a custom FPGA board to control the 
magnet power supplies (GMPS) — 
deploy the hls4ml tool

• Scope is single crate control system 
(one board with back-up), but the project 
lays the foundation for a more ambitious 
future program.
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Operations and  
control systems

G. Perdue (FNAL) et al.



•Dark Energy Survey: Sky Footprint of Observations

Self-Driving Telescopes: Control for observations

• Dark Energy Survey:  
Optical Images, Chilean Andes

• Terabytes per night

• 500 Million Galaxies, Thousands of 
exploding stars

• Competing target requirements and 
environment constraints.
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• Long: competition between faint galaxies (green), transient 
objects (yellow)


• Short: Weather, annual modulation of sky positions

• Exploring reinforcement learning for optimal scheduling and 

control

Precision Machine Control 
DES: 2012-2018

Challenge of scheduling on multiple time scales

Operations and  
control systems

Nord, Yuxin Chen (UC), JTFI award



AI Capabilities
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Computing hardware  
and infrastructure

Real-time, on-detector  
systems 

Theory and  
new algorithms

Operations and  
control systems

Accelerate Discovery  
Science



Overflow and opportunities
• This talk was a sampling of activities going on in AI at Fermilab and more broadly in HEP

• Some other hot button topics — distributed training, uncertainty quantification, simulation 
for physics …

• Going forward?
• AI at Fermilab — living on the cutting edge to accelerate exciting science challenges
• Built on general AI capabilities applicable to multiple domains

• Fermilab AI program 
contact us: ai@fnal.gov, team committed to building the AI community! 
• Interested in:

• developing common technologies 
• collaborating on similar problems and working with experts in core AI and other domains
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mailto:ai@fnal.gov


Summary and Outlook
• AI to accelerate discovery science!

• Algorithms
• Beyond Images: higher-dimensional, sparse, multi-modal representation learning
• Incorporating physics into learning: phase space integration, decorrelation, symmetries

• Massive datasets
• Physics experiments are a excellent case for big data processing
• Streaming real-time high-throughput systems to globally distributed offline compute

• Real-time on-detector systems
• AI-integrated into the hardware filters, inferences at ~100ns
• Applications for edge/IoT sensors — low-power, low-latency, cryogenic, and other extreme environments

• Operations and controls
• Improve efficiency of site-wide operations from the accelerator complex to detector control
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Extra



Simulations represent theory

• A single conventional 
simulation >millions 
of CPU hours, 
generates >petabytes


• We need 1000's of 
simulations  
(read: theoretical 
models) to test 
against real data.

Simulations of large-scale structure

Observations of large-scale structure (galaxies)

• Across time scales: 3 orders of magnitude


• Across spatial scales:  6 orders of magnitude


• With several forces:  Gravity, magnetism, hydrodynamics

 
We compare simulated universes (blue, upper) to 
observed cosmic web of galaxies (red/yellow, lower

• Parameterized 
model-assisted 
GANs for image and 
particle set generation


• Using relationships 
between group 
symmetries and 
convolutions to 
speed calculations


