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IntroductionIntroduction
Aim is to collect ideas for short-term (call coming in March 2020) AI ideas.
Long-term ideas are also welcome.
Consider overarching themes, if there are any (no need to force any).

Possible theme: ML experience already present within HEP.
Possible theme: common algorithm expertise.

Connect ideas with ANL resources: A21 and CELS.
There may already be existing collaborations.
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DOE AI for ScienceDOE AI for Science
Several "AI town hall" meetings held at several labs and DC.

ANL, ORNL, LBNL, DC
Very broad: many disciplines with cross cutting themes.

DOE uniquness (vs industry)

Techniques for robust uncertainty quanti�cation (UQ) -- neglected by
non-scienti�c applications. Without UQ methodology, many ML
techniques will not be used in critical areas.
Interpretabilty -- scientists need to understand what the methods are
doing.
Incorporation of physical models/constraints -- this is a key issue and in
early stages in ML.
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DOE AI for Science: DC HEP summaryDOE AI for Science: DC HEP summary
Usable tools for large-scale distributed training and optimization of ML
models to enable scaling up the complexity of models to orders of
magnitude above the current state-of-the-art
Training methodologies that are able to detect rare features in high-
dimensional spaces while being robust against systematic effects
Tools to quantify the impact of systematic effects of the accuracy and
stability of complex ML models
High-quality generative models satisfying physical constraints and
symmetries
Fast methods for solving high-dimensional statistical inverse problems

Should attempt to be aligned with this message.
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PSE AI for SciencePSE AI for Science
Effort within PSE to come up with AI strategy within the lab.
Weekly "town hall" meetings with presentation of current AI work.
Culminated in a workshop and a white paper that summarizes AI
plans/desires within PSE.

Many practical/organizational aspects discussed will high light short-term
strategy.
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PSE AI for Science: short term goals summaryPSE AI for Science: short term goals summary
Methods and software tools for using active learning in
observations/experiments.
Methods, software tools, and work�ows for data curation in preparation
for AI applications.
Tools that leverage robotics expertise to integrate AI in experimental
apparatuses.
AI techniques for rare event identi�cation.
Developing tools to model performance scaling in training neural
networks, and deployment of neural networks in science problems.

Should make sure we aren't in con�ict with PSE AI strategy.
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Summary of effortsSummary of efforts
Divided efforts into (arbitrary) categories:

Object classi�cation/reconstruction.
AI/ML in analysis.
AI/ML as a surrogate/dimensional reduction.
Testing/exploring new AI/ML techniques.

Division of projects is somewhat based on application.
Alternative would be to use DOE AI themes: UQ, interpretability, physics
constrained models.

I could only really see UQ commonality... but that's what the discussion is
for.
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Object/channel classi�cation
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Semantic segmentation for LHC trigger/recoSemantic segmentation for LHC trigger/reco
HL-LHC will cause signi�cant increase in detector occupancy  need to
discern pileup background from interesting events.
Semantic segmentation: channel-by-channel categorization.

Each input channel is associated with a physics object (jet, tau, etc).
Semantic segmentation could identify only relevant detector channels.

Drastically reduce input data for trigger/reconstruction  large speedup

→

→

9



NOvA/DUNENOvA/DUNE
Need to identify �avor of neutrinos and individual particles.
Used MobileNetv2 convolutional neural network (CNN) to
identify/classify �avor of neutrino based on NOvA event images.
Built infrastructure to use ANL HPCs (Cooley) and ANL hyperparameter
scan (DeepHyper) for training.
NOvA experience useful for DUNE:

Classify events/particles using raw waveform and event geometry data
from ProtoDUNE-SP.
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AI/ML in analysis
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Generic inputs for ML-based LHC BSM searchesGeneric inputs for ML-based LHC BSM searches
Instead of building complex variables manually use ML to �nd optimal
signal/background variable combination.
Rapidity Mass Matrix (RMM) combines combinations of objects to form
masses and rapidity differences.

Could be processed fully-connected neural network or more advanced
techniques like CNNs.

Promising result for ATLAS dijets+lepton search.
Plan: apply this to for next dijets+lepton search.
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Current/future imaging surveys discover
too many SNe to classify them all
spectroscopically.
Need photometric classi�cation to select
cosmologically useful Type Ia Sne.

Supernova ID with random forest (SNIRF)Supernova ID with random forest (SNIRF)

Random Forest: classic ML algorithm that is fast and accurate for
relatively small training sets.

Well suited for systematic studies.
Many issues in common with other AI applications:

Training with simulations versus real data.
Feature optimization.
Uncertainty quanti�cation.
Calibration of probabilities
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Mu2e: cosmic ray veto and beam induced noiseMu2e: cosmic ray veto and beam induced noise
Mu2e (  conversion) probes new physics mass scales of  TeV, 
improvement from past experiments.
Cosmic Ray Veto (CRV) subdetector needs to suppress cosmic
background by .
Current cut-based muon ID algorithm can't achieve  reduction.

Cosmic background event
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Mu2e: ML for cosmic ray veto and noise reductionMu2e: ML for cosmic ray veto and noise reduction
ML can exploit correlations across CRV channels and full multi-
dimensional space for beam induced noise reduction.
ML requires large data sets for training.

Currently simulating electronic noise and cosmic ray background datasets
on Theta.

Plan to test algorithm on pilot CRV modules and eventually on fully
commissioned CRV.
What is learned for CRV ML rejection can be used in other subdetectors.
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g-2: magnetic �eld interpolation with MLg-2: magnetic �eld interpolation with ML
Magnetic �eld measurement is essential for g-2 precision (to resolve
previous >3  discrepancy).
Currently the �eld map is interpolated to get �eld inside storage region.

This is the dominant source of uncertainty in �eld measurement.
ML can probe non-linear dynamic high dimensional parameter space to
�nd optimal interpolation.

σ
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AI/ML as a surrogate/dimensional
reduction
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ML for LHC detector simulationML for LHC detector simulation
Need: fast/accurate transformation of particle (~10 parameters) to
detector quantities (~100s, with detector geometry convolved).
Learn only what is needed with least amount parameters:
hyperparameter scan/reinforcement learning.

Make use of ALCF human and computing resources.
ML gives access to hardware agnostic backends  fast inference on any
type of resource.

→
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AI-accelerated forward-modeling in cosmologyAI-accelerated forward-modeling in cosmology
Work�ow: cosmological simulation  compute summary statistic 
compare  and other parameters to real observed ones.
Galaxy models can be moderately expensive to evaluate.
Explore AI & classical ML techniques to build fast and accurate surrogate
model.

Surrogate models could easily run on CPU and GPUs due to AI software
backends.

Possible solutions for galaxy models:
Autoencoders to reduce parameters.
NN approximation to galaxy model

→ →

ΛCDM
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AI-approximated posterior inference in cosmologyAI-approximated posterior inference in cosmology
Work�ow: cosmological simulation  compute summary statistic 
compute  and other parameters to real observed ones.
Brute force MCMC rapidly becomes impractical.
AI for inference: given observables estimate  and other parameters.

Variational inference to approximate posterior PDF.
AI surrogate for the full likelihood function.

→ →

ΛCDM

ΛCDM
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Testing/exploring new ML techniques
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Neuromorphic Computing - Computing
algorithms and architectures based on
applications of the biological behavior of
neurons and synapses.
Neuromorphic hardware systems are
extremely low power and exhibit lifelong
learning: good candidate for on-detector
learning like Smart Sensors.

Neuromorphic computingNeuromorphic computing

Neuromorphic systems process time dependent streams of data. To make
use must re-encode digitized data into spatio-temporal correlated spike
trains.
ALCF Expeditionary LDRD to investigate how to optimally encode ATLAS
Data.
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Uncertainty quanti�cation using MC DropoutUncertainty quanti�cation using MC Dropout
Dropout stochastically removes NN nodes for overtraining robustness.

Traditionally Dropout is enabled for training, disabled for evaluation.
Enabling Dropout during evaluation approximates the Bayesian posterior
PDF for the NN response ( ).arXiv:1506.02142
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Uncertainty quanti�cation using MC DropoutUncertainty quanti�cation using MC Dropout
Project with Graduate Student to quantify performance of Dropout based
UQ for ATLAS Flavor Tagging algorithms.

ATLAS Deep Learning models are already trained with Dropout.
Compare uncertainties from Dropout with traditional techniques.
Excellent test case as input and output uncertainties, and well validated
data driven calibration techniques already exist.

ALCF CANDLE group using Dropout to evaluate model uncertainties.
Studying ways to speed up the evaluation.
Train NN to learn posterior PDF.
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Discussion
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