HEP DIVISION BRAINSTORMING WORKSHOP WEDNESDAY 6 NOVEMBER 2019

HEPD DETECTOR R&D GROUP PROGRAMS, STATUS, AND DISCUSSION TOPICS

BOB WAGNER

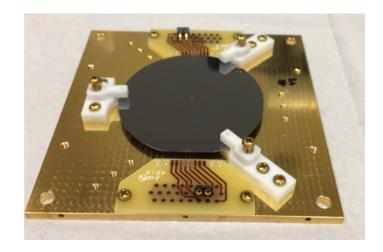
Argonne HEPD Instrumentation Group Leader PETE BARRY, TOM CECIL, STEVE KUHLMANN, TOM LECOMPTE, JESSICA METCALFE, JUNQI XIE, JINLONG ZHANG

OVERVIEW OF DETECTOR R&D PROGRAM

Detector R&D Group:

- <u>Superconducting Detectors</u> identified as major focus of Detector R&D.
 Development of lower Tc materials, MKIDs, and testing of same
- <u>Q-Pix</u> promoted as other major initiative of Detector R&D, needs plan for work with defined objectives and goals; charge of Detector R&D Task Force
- <u>Ring Resonator</u> Development of optical notch filter to remove OH background lines in near infrared. FY2020 is last year of multi-year program with goal of on-sky tests of optical ring filter in NIR
- <u>Microchannel Plate Photodetector</u> scaled down from major program of last decade (LAPPD) to ongoing targeted improvement of MCP-PMT performance in timing resolution, magnetic field tolerance, and pixel readout; also support for 3D printed MCP development
- <u>CMOS Silicon Pixel</u> mainly irradiation and testing of pixel devices developed by collaborators (led by U. Geneva group); mandated to conclude Detector R&D program in FY2020
- <u>Nanoparticle Wavelength Shifters</u> to date has developed WLS materials outside of Detector R&D support. Plan to support work in FY2020 as part of Q-Pix UV photodetection program

SUPERCONDUCTING DETECTORS

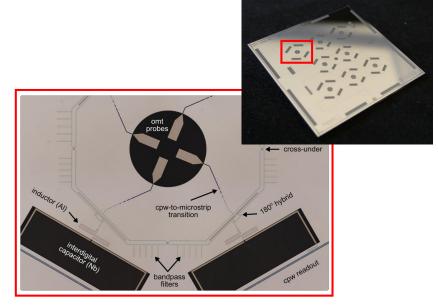

Well-defined program that includes development of lower Tc TES & Resonator materials for dark matter, neutrino physics, and light detection. MKIDs for higher frequency bands in CMB and on-chip spectroscopy for Line Intensity Mapping

- Detector R&D work concentrates on development of
 - Lower Tc TES devices (~20mK): Vlod Yefremenko
 - Low Tc TES development & testing: Gensheng Wang, Jianje Zhang
 - New materials for TES and resonators: Yefremenko
 - Current amplifier for readout: Wang
 - ADR TES+Resonator testing: Tom Cecil
 - Resonator development: Pete Barry
 - materials characterization
 - OMT-coupled KIDs
 - KID array
- Physics Impacts: enable light dark matter search with very low threshold (~10eV), low energy neutrino physics, improving CMB readout and detection in higher frequency bands

LOW-TC TES LIGHT DETECTOR

- The energy resolution of a TES detector can be improved by lowering its operational temperature
- A Low-Tc TES light detector with lowthreshold energy (a few tens of eV) is required to measure scintillation (or Cherenkov) light for a zero background cryogenic Neutrino-Less Double Beta Decay (NLDBD) search experiment
- The developed technology will also be a critical technology for
 - Low mass Dark Matter searches
 - High resolution light detectors in high energy physics

A low-Tc TES detector measuring light has three components: a surface-engineered thick silicon wafer (2-inch in diameter) as a light absorber, a TES thermometer in the middle measuring the absorbed energy, and a weak thermal link to a cold bath.



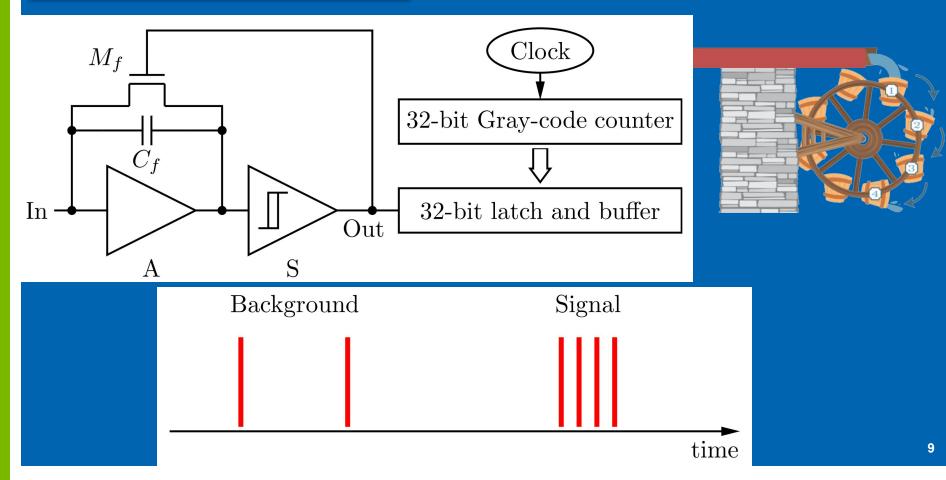
SUPERCONDUCTING RESONATOR R&D

OMT-coupled MKIDs

- Work at CNM (ANL) + PNF (UChicago) to develop high frequency (>200 GHz) planar OMT-coupled kinetic inductance detector arrays
- Prototype devices successfully fabricated and laboratory testing on-going
- Now scaling to full-wafer (6 inch) process

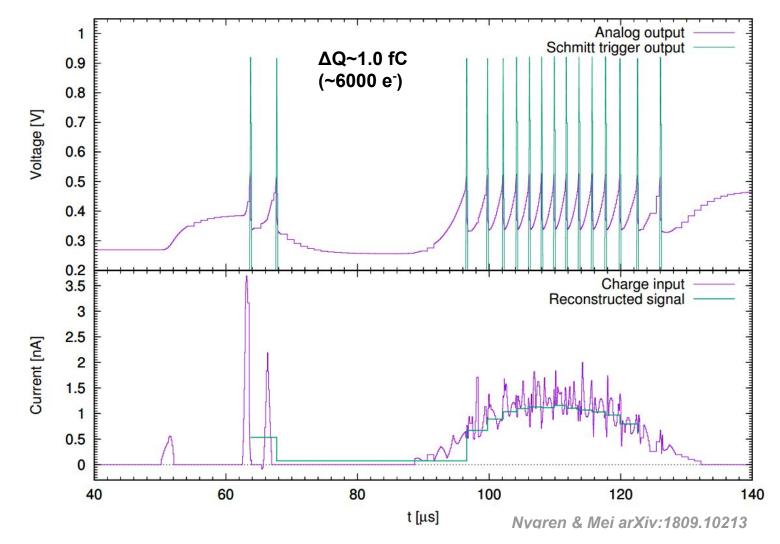
On-chip spectroscopy

- Current mm-wave spectroscopy limited by scalelimited technology (e.g. grating)
- Instead, use miniature on-chip superconducting circuits to disperse incoming radiation
- Enable new instruments such as multi-object spectrometers and mm-wave IFUs
- Finalizing design of initial prototype arrays for preliminary testing


slide courtesy of Pete Barry, Argonne HEPD

WHAT IS Q-PIX?

Reset Time Difference


Q-PIX CONCEPT

What is new here?

- Take the <u>difference</u> between <u>sequential</u> resets
 - Reset Time Difference = RTD
- Total charge for any $RTD = \Delta Q$
- RTD's measure the instantaneous current and captures the waveform
 - Small average current (background) = Large RTD
 Background from ³⁹Ar ~ 100 aA
 - Large average current (signal) = Small RTD
 - Typical minimum ionizing track ~ 1.5 nA
- Signal / Background ~ 10⁷
 - Background and Signal should be easy to distinguish
 - No signal differentiation (unlike induction wires)

Q-PIX SIGNAL

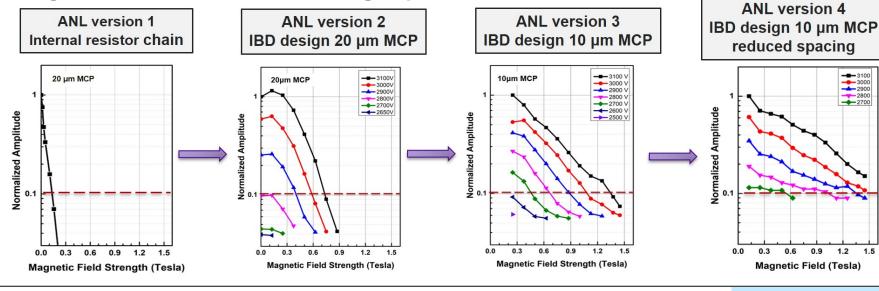
Argonne National Laboratory is a U.S. Department of Energy laboratory wanaged by UChicago Argonne, LLC. slide courtesy of Jonathan Asaadi, UTA

Q-PIX WORK AT ARGONNE

Argonne is recognized as collaborator in developing Q-Pix concept

- Actual work to date has focussed on pixel board mechanical design and support structure
 - Mainly work performed by Vic Guarino in EOF
 - Enthusiastic support from Q-Pix leadership
- Area of interest for Argonne work is UV light detection scheme compatible with presence of pixel boards vs. wire anode readout (transparent for UV)
 - Work has begun but needs coherent plan acceptable to HEPD and Q-Pix collaboration
 - UV sensitive materials to directly absorb UV and produce signal electrons
 - amorphous selenium
 - perovskites
 - nanoparticle WLS or nanoplatelets for direct conversion
 - Leverages abilities and resources in Materials Science and/or Applied Materials Divisions
 - Alex Martinson (MSD) supported one day per week to work on materials for UV conversion
 - Steve Magill has scheme for nanoplatelets to WLS UV to visible or directly to electrons
 - Another possibility is electronics integration and readout of ASICs
- Need to identify who does the work at Argonne and who leads the program

MICROCHANNEL PLATE PHOTODETECTORS


Argonne is recognized leader in development of ALD functionalized MCP-PMTs

- OHEP supports low level of work continuing for MCP-PMT development; specifically:
 - Continued collaboration with Incom, Inc mainly through SBIR
 - Improved magnetic field performance and timing resolution by use of smaller diameter pore MCPs and optimized spacing of detector components
 - lifetime testing: based at U. Texas-Arlingtion; collaborative work with Incom and HEPD
- Physics Division is pursuing fabrication of new processing system for 10×10cm² MCP-PMT for use in MEP program; especially for future EIC RICH detectors
 - HEPD should be a collaborator on using this system to produce MCP-PMTs
 - Would require increased effort from HEPD physicists
- 3D MCP fabrication via Nanoscribe printer located in Bldg 241.
 - Owned by MSD but main work is for HEP (MCPs) and APS (X-ray lenses)
 - limited by time and configuration to structures $\mathcal{O}(1\text{mm}^3 \text{ or } 1\text{mm} \times \text{cm}^2)$
 - Have concept for scaled printer for m² structures and filed for patent
 - Promised funding (~\$2M) from NNSA-NA22 in Feb. 2019 withdrawn due to priority change. Continuing to seek alternative funding sources.

ARGONNE MCP-PMT R&D STATUS

Magnetic field tolerance and timing improvement

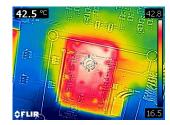
		ANL Version 2	ANL Version 3	ANL Version 4
		Standard 20 µm MCP-PMT	10 μm MCP-PMT	10 μm MCP-PMT
			without reduced spacing	with reduced spacing
Gain Characteristic	Gain	1.35 × 10 ⁷	3.05 × 10 ⁶	2.0 × 10 ⁷
Time Characteristic	Rise time	536 ps	439 ps	390 ps
	Timing distribution RMS	204 ps	106 ps	109 ps
	System resolution	70.0 ps	37.2 ps	41 ps
	Time resolution	63 ps	20 ps	28.5 ps
	Differential time spread	11 ps	7 ps	5 ps
	Spatial resolution	0.83 mm	0.53 mm	0.38 mm
Magnetic Field	Magnetic field tolerance	0.7 Tesla ₁₁	1.3 Tesla	> 1.5 Tesla

slide courtesy of Junqi Xie, Argonne Physics Div.

3D PRINTED CAPILLARY ARRAYS AND X-RAY LENSES

Ultra-high resolution 3D printer enables printing capillary arrays in polymer structure for ALD functionalization into MCPs for very low cost

- Photon absorption
 Photonesist is LIV sensitive: two photons at 780nm provide energy for
- Photoresist is UV sensitive; two photons at 780nm provide energy for polymerization
- Probability for two photon absorption only significant at laser focus which allows sub-micron resolution
- Turning to development using organically modified ceramic material that allows much higher temperatures for baking and ALD
- 3D printed lenses for focussing beams at Advanced Photon Source
- Replaces very expensive commercial lenses at cost of few \$'s



SILICON PIXEL WORK AT ARGONNE

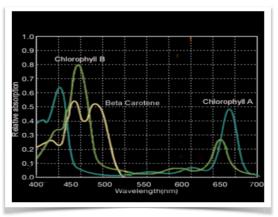
- Hardware/firmware/software updates to correlate FELIX for RD53A and FELIX for FEI4/ATLASPix/MIMOSA modules (saw first RD53A beam spot with FELIC in May!)
 - Writing paper on telescope performance (need data from one more test beam run)
- Improving the performance and efficiency of the Argonne Pixel Telescope
 - Telescope plane FEI4 Quad modules need to be cooled to work efficiently
 - Implementing peltier cooling blocks w/ TPG material to telescope planes
 - Add remote controlled stages for faster alignment in beam
 - Improve heat transfer in DUT box. Current: -25°C Goal: -45°C
- Plans:
 - study radiation damage effects in CMOS using H35demo samples irradiated at Los Alamos last year (H35demo comprised of several pixel blocks with different radiation tolerance schemes implemented)
 - Commission edge-TCT setup to study E-field profile changes
 - Perform test beam and irradiation studies on ATLASPix-v2 when available

20°C improvement observed with peltier operated in lab at room temp

RING RESONATORS

Ring resonator chip on-sky tests will begin in Dec., 2019 with 4 iterations at AAO Australia and 3 at Lowell in Flagstaff AZ planned for FY2020

- Preparations for on-sky tests in Australia (Simon Ellis) and Lowell Obs. (Kyler Kuehn) are in progress.
 - Australia planned for December, 2019 using setup debugged by Kuhlmann in 2017 test
 - Lowell initial test planned for January, 2020 using existing spectrograph and new equipment for resonators funded by \$20k grant from Lowell. Purchased their own foundry resonator chip using Argonne designs
 - Cycle: 1) new chips from foundry, 2) test and retune resonant wavelengths at Argonne requires
 ~2 months ⇒⇒ 4 tests in Australia, 3 tests at Lowell in FY2020
 - Results of tests plus roadmaps for how to use ring resonators in future for SNe and other science to be published late FY20 or early FY21.
- Argonne work part of decadel survey white paper on astrophotonics
- Dave Underwood at Argonne making progress on inexpensive NIR detector for SNe follow-up demonstrator using notch filters.
 - Commercial detector with 30% QE in J-band with low noise; plus cooling and readout electronics available for ~\$30k
 - Underwood's custom electronics uses photodetectors with 90%QE and potentially lower noise. Needs cooling and FPGA engineering
 - Trade-offs between alternatives being studied at present
- In separate application, Simon Ellis has \$50k grant to develop RR for positronium point sources from DM and bkgd sources using ground-based telescopes
 - Large fraction of free positrons spend time in positronium state which emits a strong line very near at strong atmospheric OH line.
 - If Ring Resonator can precisely remove nearby OH line, then detecting positronium point sources from ground would be possible for first time



NANOPARTICLE-ENHANCED PHOTODETECTION

- SBIR CapeSym, Inc. (8/19 4-20)
 - Identify nanoparticle candidates for detection of 128 nm light from Argon and 175 nm light from Xenon (Neutrino and Dark Matter experiments)
 - ANL role test candidates and characterize in terms of absorption, wavelength-shift size, emission
 - Filter-based testing to low wavelengths in vacuum, nitrogen

15

- Submitted Technology Commercialization Fund Proposal Declaration – 10/11/19
 - Enhanced plant growth using nanoparticle films on greenhouse panels
 - Tuned to absorb near UV, visible light and sized to emit at the dual peaks of chlorophyll absorption
 - Initial tests yield up to 3X growth rate with nanoparticle film

SUGGESTED TOPICS FOR DISCUSSION

- What will be our plan for Q-Pix Work within HEPD?
 - Being discussed/formulated within Detector R&D Task Force. Input from today's workshop will be valuable. Invite anyone interested to attend Task Force meetings to help us.
- What are the opportunities for HEPD Detector R&D to pursue new ideas that that advantage of the facilities and expertise available throughout Argonne
 - Need to consider what physics HEPD is doing or would like to do
 - What technology would enable and/or support studies that wouldn't happen without it
- Given the HEPD ATLAS group work on silicon pixels, what work, if any, is there for collider pixel detectors for Detector R&D group
 - OHEP has mandated phase out silicon Detector R&D work. We will follow this directive
 - Thin film detector development is a possible alternative
- Is electronics integration/readout work that we want to pursue for Q-Pix?
 - Would require hire of electronics engineer to carry out work
- What skill set would we want for an electronics engineer hire?
 - Other areas where opportunities exist if we had an engineer skilled in …

