Commissioning of protoDUNE DP PEN/TPB studies

J. Soto

DPPD consortium
$12^{\text {th }}$ November 2019

PEN/TPB WLS systems comparison

- PEN Foil
- Light arrives to the foil.
- TPB Coating:
- Light arrives to the coating.

Coating has a smaller active surface than foil.
¡We expect more light arriving to the foil!

PEN/TPB WLS systems comparison

- PEN Foil
- Light arrives to the foil.
- Re-emission efficiency not known (smaller than TPB).
- TPB Coating:
- Light arrives to the coating (smaller active surface than foil).
- $\quad 100 \%$ re-emission efficiency.

PEN/TPB WLS systems comparison

- PEN Foil
- Light arrives to the foil.
- Re-emission efficiency not known (smaller than TPB).
- Geometrical looses PEN-PC (larger).
- TPB Coating:
- Light arrives to the coating (smaller active surface than foil).
- $\quad 100 \%$ re-emission efficiency.
- Geometrical looses Foil-PC.

Light is re-emitted isotropically, and some arrives to the photocathode.
We loose more light in the foil w.r.t the coating.

PEN/TPB WLS systems comparison

- PEN Foil
- Light arrives to the foil.
- Re-emission efficiency not known (smaller than TPB).
- Geometrical looses PEN-PC (larger).
- $\mathrm{QE}=0.2$
- TPB Coating:
- Light arrives to the coating (smaller active surface than foil).
- $\quad 100 \%$ re-emission efficiency.
- Geometrical looses Foil-PC.
- $\mathrm{QE}=0.2$

PEN/TPB WLS systems comparison

- PEN Foil
- Light arrives to the foil. $\mathrm{Y}_{\text {Foil }}$
- Re-emission efficiency not known. $\varepsilon_{\text {pen }}$
- Geometrical looses Foil-PC. $\Delta_{\text {foil-PC }}$
- $\mathrm{QE}=0.2$

$$
\# P E_{\text {PEN-FOIL }}=y_{\text {Foil }} \varepsilon_{\text {PEN }} \Delta_{\text {PEN-PC }} \mathrm{QE}
$$

- TPB Coating:
- Light arrives to the coating (smaller active surface than foil). $\mathrm{Y}_{\text {coat }}$
- $\quad \sim 100 \%$ re-emission efficiency. $\varepsilon_{\text {Tрв }}$
- Geometrical looses Coating-PC. $\Delta_{\text {coat-PC }}$
- $\mathrm{QE}=0.2$
\#PE TPB-coat $=\gamma_{\text {coat }} \varepsilon_{\text {TPB }} \Delta_{\text {coat-PC }} \mathrm{QE}$

PEN/TPB WLS systems comparison

- PEN Foil
- Light arrives to the foil. $\mathrm{Y}_{\text {Foil }}$
- Re-emission efficiency not known. $\varepsilon_{\text {pen }}$
- Geometrical looses Foil-PC. $\Delta_{\text {foil-PC }}$
- $\mathrm{QE}=0.2$
\#PE PEN-FOIL $=y_{\text {Foil }} \varepsilon_{\text {PEN }} \Delta_{\text {PEN-PC }} Q E$
- TPB Coating:
- Light arrives to the coating (smaller active surface than foil). $\mathrm{y}_{\text {coat }}$
- $\quad \sim 100 \%$ re-emission efficiency. $\varepsilon_{\text {TРв }}$
- Geometrical looses Coating-PC. $\Delta_{\text {coat-PC }}$
- $\mathrm{QE}=0.2$
\#PE TPB-coat $=\gamma_{\text {coat }} \varepsilon_{\text {TPB }} \Delta_{\text {coat-PC }} \mathrm{QE}$

How do we obtain $\varepsilon_{\text {PEN }}$?

- $\# P E_{\text {PEN-foil }} / \# P E_{\text {TPB-coat }}$ can be obtained from data.
- $\mathrm{Y}_{\text {Foil }} / \mathrm{Y}_{\text {coat }}$ and $\Delta_{\text {PEN-PC }}$ can be simulated.
- $\# \mathrm{PE}_{\text {TPB-coat }} / \mathrm{Y}_{\text {coat }}=\varepsilon_{\text {TPB }} \Delta_{\text {coat-PC }} \mathrm{QE}=0.12$. It has been already measured experimentally in Pavía.

Triggering on channel 23.
Comparing channel 21 (TPB) w.r.t channel 22 (PEN), all placed at the centre of the detector.

- Due to the symmetry of the PMT positions, if we consider that the cosmics arrive isotropically, both PEN \& TPB PMTs should receive the same amount of light.

- TPB PMT provides a larger signal w.r.t PEN PMT when both operate at the same gain.
- Both responses are equalized when $\mathrm{G}_{\text {PEN }} / \mathrm{G}_{\text {TPB }}=12 \%$

 simulated.

Computing $\mathrm{y}_{\text {foil }} / \mathrm{y}_{\text {coat }}$

- 25 M photons are generated uniformly within the cryostat (assuming cosmics are crossing uniformly in the LAr) \rightarrow Including all LAr below the TPC active volume, and below the PMTs.
- We focus on the \# of photons arriving to the 4 PMTs at the center \rightarrow They should not have other geometrical effects operating due to the symmetry of their positions within the detector.

$\left.$		\# photons
generated		
:---:		
the WLS		
(plate/coating)	\right\rvert\,	

$$
\mathrm{y}_{\text {coat }} I \mathrm{y}_{\text {foil }}=70.56 \%
$$

Comments:

- Foils do receive more direct light than coating (42\% more):
\rightarrow Foils do have more active surface exposed to LAr than the TPB coating.
\rightarrow BUT! This number refers to the number of photons arriving to the WLS, not to the PMT.

Above: Initial position of simulated photons (within the PEN-Foil geometry).

How many photons emmited by the PEN foil (green zone) do arrive to the PMT surface IPhotoCathode (red zone)?
To simulate this, I use TPB coated PMTs (the active volume is in the glass), and generate photons in the position where the PEN foil would be placed.
$1 e 5$ photons generated on top of LArSoftChannel 15 (PEN-like) 24753 photons arrive to the red area of the pmt.
Geometry factor: $24.75 \pm 0.16 \%$
1 e 5 photons generated on top of LArSoftChannel 21 (PEN-like) 24738 photons arrive to the red area of the pmt.
Geometry factor: $24.74 \pm 0.16 \%$

Above: \# arrival photons per channel. Photons simulated above channel 15 (top), 21 (bottom).

PEN/TPB WLS systems comparison

- PEN Foil
- Light arrives to the foil. $\mathrm{Y}_{\text {Foil }}$
- Re-emission efficiency not known. $\varepsilon_{\text {pen }}$
- Geometrical looses Foil-PC. $\Delta_{\text {Foil-PC }}$
- $\mathrm{QE}=0.2$
$\# \mathrm{PE}_{\text {PEN-FOIL }}=\mathrm{y}_{\text {Foil }} \varepsilon_{\text {PEN }} \Delta_{\text {PEN-PC }} \mathrm{QE}$
- TPB Coating:
- Light arrives to the coating (smaller active surface than foil). $\mathrm{y}_{\text {coat }}$
- $\quad \sim 100 \%$ re-emission efficiency. $\varepsilon_{\text {TРв }}$
- Geometrical looses Coating-PC. $\Delta_{\text {coat-PC }}$
- $\mathrm{QE}=0.2$
\#PE TPB-coat $=\gamma_{\text {coat }} \varepsilon_{\text {TPB }} \Delta_{\text {coat-PC }} \mathrm{QE}$

$$
4 \frac{\# P E_{\text {TPB-coat }}}{\# P E_{\text {PEN-Foll }}}=\frac{\mathrm{Y}_{\text {coat }} 0.12}{\mathrm{Y}_{\text {Foil }} \varepsilon_{\text {PEN }} \Delta_{\text {PEN-PC }} \mathrm{QE}}
$$

How do we obtain $\varepsilon_{\text {PEN }}$?

- \#PE PEN-Foil $/ \# P E_{\text {TPB-coat }} \rightarrow 0.12$
- $\mathrm{V}_{\text {coat }} / \mathrm{V}_{\text {Foil }} \rightarrow 0.706$

$$
\varepsilon_{\text {PEN }}=\frac{0.12\left(\mathrm{y}_{\text {coat }} / \mathrm{Y}_{\text {Foil }}\right)\left(\# \mathrm{PE}_{\text {PEN-Foll }} / \# \mathrm{PE}_{\text {TPB-coat }}\right)}{\Delta_{\text {PEN-PC }} \mathrm{QE}}=20.6 \%
$$

- $\Delta_{\text {PEN-PC }} \rightarrow 0.247$
- $\# P E_{\text {TPB-coat }} / Y_{\text {coat }}=\varepsilon_{\text {TPB }} \Delta_{\text {coat-PC }} Q E=0.12$ (Pavía measurement)

Comments and next steps

- Effective response of the PEN-Foil system gives a $\sim 12 \%$ of the amplitude w.r.t the TPB-coating.
- If we de-convolute the geometrical effect due to the foil, we obtain a PEN wavelength shifting efficiency of $\sim 21 \%$.
- Next steps:
- Extend the analysis using all TPB PMTs (now only those placed in the center are used), and compute errors.
- Are there non-linearity or photocathode saturation effects applying? Since both PMTs are receiving different amount of light, those can be affecting differently both PMTs, also when we tune the gain.
- Is the WLS efficiency dependent on the amount of light received?

Backup

Run	Gain PEN/ Gain_TPB	PMT trigger	Threshold
1474	0.12	21	5
1475	0.12	21	10
1476	0.12	21	20
1477	0.12	21	50
1478	0.12	23	5
1479	0.12	23	10
1480	0.12	23	20
1481	0.12	23	50
1483	0.14	21	5
1484	0.14	21	10
1485	0.14	21	20
1486	0.14	21	50
1487	0.14	23	5
1488	0.14	23	10
1489	0.14	23	20
1490	0.14	23	50
1491	0.16	21	5
1492	0.16	21	10
1542	0.16	21	20
1543	0.16	21	50
1544	0.16	23	5
1545	0.16	23	10
1546	0.16	23	20
1547	0.16	23	50

https://pddpelog.web.cern.ch/elisa/display/585
PEN gains are adjusted to be 1.e7.
TPB gains are adjusted to be 1.2e6/1.4e6/1.6e6
Trigger on ch 21TPB / 23PEN Threshold scan: 5-10-20-50 ADC

				Saturated (\%)		Average amplitude		
Run	Trigger channel	Pedestal of the trigger channel (ADC)	Gain	$\begin{aligned} & \text { ch21 } \\ & \text { TPB } \end{aligned}$	$\begin{aligned} & \text { Ch23 } \\ & \text { PEN } \end{aligned}$	$\begin{gathered} 21 \\ \text { TPB } \end{gathered}$	$\begin{gathered} 23 \\ \text { PEN } \end{gathered}$	Ratio PEN/TP B
1474	21 TPB	5	0.12	0.0\%	0.1\%	67.3	68.8	1.02
1475	21 TPB	10	0.12	0.0\%	0.1\%	92.7	93.0	1.00
1476	21 TPB	20	0.12	0.0\%	0.1\%	133.2	127.2	0.95
1477	21 TPB	50	0.12	0.0\%	0.3\%	233.3	212.0	0.91
1478	23 PEN	5	0.12	0.0\%	0.0\%	7.1	13.3	1.87
1479	23 PEN	10	0.12	0.0\%	0.0\%	37.4	44.8	1.20
1480	23 PEN	20	0.12	0.0\%	0.1\%	89.0	95.4	1.07
1481	23 PEN	50	0.12	0.0\%	0.2\%	166.0	174.3	1.05
1483	21 TPB	5	0.14	0.0\%	0.1\%	74.8	68.2	0.91
1484	21 TPB	10	0.14	0.0\%	0.1\%	100.1	86.5	0.86
1485	21 TPB	20	0.14	0.0\%	0.1\%	138.5	118.5	0.86
1486	21 TPB	50	0.14	0.0\%	0.2\%	242.1	195.6	0.81
1487	23 PEN	5	0.14	0.0\%	0.0\%	8.1	13.2	1.63
1488	23 PEN	10	0.14	0.0\%	0.0\%	41.2	43.9	1.07
1489	23 PEN	20	0.14	0.0\%	0.1\%	100.9	95.4	0.94
1490	23 PEN	50	0.14	0.0\%	0.2\%	193.6	173.9	0.90
1491	21 TPB	5	0.16	0.0\%	0.1\%	76.8	61.4	0.80
1492	21 TPB	10	0.16	0.0\%	0.1\%	105.4	83.3	0.79
1542	21 TPB	20	0.16	0.0\%	0.1\%	149.6	116.7	0.78
1543	21 TPB	50	0.16	0.0\%	0.2\%	255.7	184.4	0.72
1544	23PEN	5	0.16	0.0\%	0.0\%	4.5	9.9	2.20
1545	23PEN	10	0.16	0.0\%	0.0\%	32.0	33.0	1.03
1546	23PEN	20	0.16	0.0\%	0.1\%	107.1	94.2	0.88
1547	23PEN	50	0.16	0.0\%	0.2\%	202.9	168.2	0.83

If we trigger on
PEN, we are biased by the SPE amplitude close to the amplitude threshold.

Factor 0.12 seems to fit better
https://pddpelog.web.cern.ch/elisa/display/585
PEN gains are adjusted to be 1.e7.
TPB gains are adjusted to be 1.2e6/1.4e6/1.6e6
Trigger on ch 23 (PEN), comparing ch 21TPB / 22PEN Threshold scan: 5-10-20-50 ADC

run	Threhold (ADC)	Ratio	Saturated		Average Amplitude (ADC)			PEN/TPB
			$\begin{gathered} 21 \\ \text { TPB } \end{gathered}$	$\begin{gathered} 22 \\ \text { PEN } \end{gathered}$	$\begin{gathered} 23 \\ \text { Trigger } \end{gathered}$	$\begin{gathered} 21 \\ \text { TPB } \end{gathered}$	$\begin{gathered} 22 \\ \text { PEN } \end{gathered}$	
1478	5	0.12	0.0\%	0.0\%	13.3	7.1	7.7	1.09
1479	10	0.12	0.0\%	0.0\%	44.8	37.4	36.8	0.98
1480	20	0.12	0.0\%	0.1\%	95.4	89.0	87.0	0.98
1481	50	0.12	0.0\%	0.2\%	174.3	166.0	152.8	0.92
1487	5	0.14	0.0\%	0.0\%	13.2	8.1	7.5	0.93
1488	10	0.14	0.0\%	0.0\%	43.9	41.2	36.5	0.89
1489	20	0.14	0.0\%	0.1\%	95.4	100.9	86.3	0.85
1490	50	0.14	0.0\%	0.2\%	173.9	193.6	153.6	0.79
1544	5	0.16	0.0\%	0.0\%	9.9	4.5	4.1	0.92
1545	10	0.16	0.0\%	0.0\%	33.0	32.0	24.3	0.76
1546	20	0.16	0.0\%	0.1\%	94.2	107.1	82.4	0.77
1547	50	0.16	0.0\%	0.1\%	168.2	202.9	144.1	0.71

https://pddpelog.web.cern.ch/elisa/display/585

PEN gains are adjusted to be 1.e7. TPB gains are adjusted to be 1.2e6/1.4e6/1.6e6

Trigger on ch 21TPB, comparing ch 20TPB / 23PEN Threshold scan: 5-10-20-50 ADC

| run | Minimum
 amplitude
 (ADC) | ratio | | Saturated | | Average Amplitude (ADC) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TPB | | 23
 PEN | 21
 trigger | 20
 TPB | 23
 PEN | PEN/TP
 B | | |
| 1474 | 5 | 0.12 | 0.0% | 0.1% | 67.3 | 69.1 | 68.8 | 1.00 |
| 1475 | 10 | 0.12 | 0.0% | 0.1% | 92.7 | 96.4 | 93.0 | 0.96 |
| 1476 | 20 | 0.12 | 0.0% | 0.1% | 133.2 | 136.7 | 127.2 | 0.93 |
| 1477 | 50 | 0.12 | 0.0% | 0.3% | 233.3 | 235.6 | 212.0 | 0.90 |
| 1483 | 5 | 0.14 | 0.0% | 0.1% | 74.8 | 74.4 | 68.2 | 0.92 |
| 1484 | 10 | 0.14 | 0.0% | 0.1% | 100.1 | 101.8 | 86.5 | 0.85 |
| 1485 | 20 | 0.14 | 0.0% | 0.1% | 138.5 | 141.0 | 118.5 | 0.84 |
| 1486 | 50 | 0.14 | 0.0% | 0.2% | 242.1 | 244.5 | 195.6 | 0.80 |
| 1491 | 5 | 0.16 | 0.0% | 0.1% | 76.8 | 77.2 | 61.4 | 0.80 |
| 1492 | 10 | 0.16 | 0.0% | 0.1% | 105.4 | 107.7 | 83.3 | 0.77 |
| 1542 | 20 | 0.16 | 0.0% | 0.1% | 149.6 | 153.7 | 116.7 | 0.76 |
| 1543 | 50 | 0.16 | 0.0% | 0.2% | 255.7 | 254.3 | 184.4 | 0.73 |

