

The process

Develop a work plan annually to guide resource allocations, priorities

- Start each fall by meeting with each experiment offline leadership
 - Discuss
 - Last year's plan
 - Sim/reco priorities of the experiment for the coming year, implications for LArSoft
 - Gather any anticipated requests, comments, other input
- Use this input to develop a draft plan
 - Discuss with all experiments at the October Offline Leads Meeting
 - Iterate as needed
- Write final draft in Nov.
 - Distribute to experiment spokes
 - Get experiment approval at Dec. Steering Group Meeting (the spokes or their delegates)

Brief status of 2019 work plan

- Re-architecting LArSoft / experiment code for thread safety
- Optimizing for performance (mainly thinking vectorization, multi-threading)
- Migration to GitHub + pull-request approval workflow (a la CMS)
- Migrating experiments to re-factored Geant4 driver / interfaces
- Re-factoring to decouple from specific neutrino event generator versions
- Event overlay workshop (co-hosted with MicroBooNE)
- LArSoft tutorial / multi-threading / future vision workshop
- Builds of weekly integration releases + test releases + release candidates
- Customer support

Considered as "high priority"

Brief status of 2019 work plan

- Re-architecting LArSoft / experiment code for thread safety
- Optimizing for performance (mainly thinking vectorization, multi-threading)
- Migration to GitHub + pull-request approval workflow (a la CMS)
- Migrating experiments to re-factored Geant4 driver / interfaces
- Re-factoring to decouple from specific neutrino event generator versions
- Event overlay workshop (co-hosted with MicroBooNE)
- LArSoft tutorial / multi-threading / future vision workshop
- Builds of weekly integration releases + test releases + release candidates
- Customer support

Completed by end of CY2019

Brief status of 2019 work plan

- Re-architecting LArSoft / experiment code for thread safety
- Optimizing for performance (mainly thinking vectorization, multi-threading)
- Migration to GitHub + pull-request approval workflow (a la CMS)
- Migrating experiments to re-factored Geant4 driver / interfaces
- Re-factoring to decouple from specific neutrino event generator versions
- Event overlay workshop (co-hosted with MicroBooNE)
- LArSoft tutorial / multi-threading / future vision workshop
- Builds of weekly integration releases + test releases + release candidates
- Customer support

Significant progress / on-going task

Brief status of 2019 work plan

- Re-architecting LArSoft / experiment code for thread safety
- Optimizing for performance (mainly thinking vectorization, multi-threading)
- Migration to GitHub + pull-request approval workflow (a la CMS)
- Migrating experiments to re-factored Geant4 driver / interfaces
- Re-factoring to decouple from specific neutrino event generator versions
- Event overlay workshop (co-hosted with MicroBooNE)
- LArSoft tutorial / multi-threading / future vision workshop
- Builds of weekly integration releases + test releases + release candidates
- Customer support

Brief status of 2019 work plan

Less than successes (...so far)

- Event display re-architecting / re-writing
- New build system (despite significant progress...)
- Incorporating pixel detectors

Brief status of 2019 work plan

Less than successes (...so far)

- Event display re-architecting / re-writing
- New build system (despite significant progress...)
- Incorporating pixel detectors

Considered as "high priority"

Overview of proposed 2020 work plan elements

Major projects in short-term priorities

- Event display work
- Thread safety / multi-threading / vectorization
- Integrating LArTPCs with pixel readouts
- Recommendations / support for running in containers
- New build system
- Complete nutools re-factoring

Potentially major item to watch:

Possible adaptations required for long DUNE readouts (~100 sec)

Overview of proposed 2020 work plan elements

Long-term and continuing priorities

- Software builds
- Customer support

Notable areas where assistance has been / will be requested

- Continued help with migration to re-factored Geant4 driver / interface
 - DUNE, ICARUS, SBND
- Magnetic field map for DUNE ND
- Coordination with non-LArTPC DUNE ND detector elements
- ICARUS geometry

...Will not talk about any of these last items

The 2020 work plan items

Event display

Goal

- Replace existing LArSoft ED with modern, maintainable, web-based ED Comments
 - Still the most commonly requested work item, so still a high priority
 - Plan is to engage BNL for this
 - Leverage an existing display they are supporting
 - Have had initial discussions
 - Generally positive, but needs additional follow-up work
 - In the meantime
 - Experiments have requested improvements to the existing ED

Effort

- Plan / hope that bulk of coding to comes from outside
- Unsure until we negotiate terms. Will definitely require Fermilab effort.

Ensuring thread safety / multi-threading / vectorizing

Goal

- To ensure production workflows operate in multi-threaded art
- To introduce multi-threading in selected algorithm code to control memory scaling, CPU utilization on grid resources
- To enable running on HPC resources

Comments

- On-going thread safety / multi-threading work
 - ProtoDUNE / DUNE FD "data preparation" + signal processing workflows
 - ICARUS noise reduction + signal processing workflows
- Expect SBND to need this as well
 - Goal is common infrastructure, but unclear whether this will succeed

Effort

- Last year: about 1.5 FTE DC + some additional from HepReco SciDAC
- Have about 0.5 FTE available this year. Expect to last all year

Integrating pixel detectors

Goal:

To integrate simulation and reconstruction for LArTPCs with pixel readouts into LArSoft

Comments

- Currently strong interest from DUNE ND (ArgonCube)
- Expect to play strong role in architecture and interfaces, but delegate most of implementation to DUNE ND
- 3D reconstruction should be shareable with other 3D imaging techniques

Effort

Guessing: 0.1 FTE for 6 months to a year on LArSoft end

Support for containers

Goal:

- Provide an officially recognized, recommended solution for building / running LArSoft in containers
- Ensure suitable images are available

Comments

- High priority
- Dropped official Mac OS support due to effort of supporting builds
 - Situation may change with new build system
 - Still a vocal minority develop entirely on Mac OS
- This is the alternative solution
- Also desired to standardize environment for running on grid

Effort

1-2 FTE month to get started + on-going with regular releases

New build system

Goal:

- Replace existing arcane packaging and build tools used only by Fermilab with modern, community supported standard
 - Based around HEP Software Foundation endorsed Spack packaging + cmake

Comments

- High priority
 - Long-standing need, and long requested by DUNE
 - Dropped Mac OS support in part due to issues with current system
- Requires development of a layer between Spack and cmake: SpackDev
 - LArSoft is spectator to that project
 - Due to importance, we track status and progress on regular basis

Effort

2-4 FTE months once system is delivered

NuTools re-factoring

Goal:

- To decouple LArSoft from specific generator versions
 - Requires re-factoring of NuTools and Genie products initially

Comments

- NuTools and Genie re-factoring nearly completed
- Desired extensions of work:
 - Include Gibuu and NuWro generators
 - Neither are currently directly interfaced with LArSoft
 - Geant4 (less important)

Effort

- ~ 1 FTE month remaining for NuTools / Genie
- ~ 3-5 FTE months for Gibuu + NuWro generators

On-going work

Software builds

- Goals
 - Weekly integration releases (assuming no change post-GitHub migration)
 - Test/candidate releases as needed to for new versions of physics packages
- Historically ~0.3 FTE

Customer support

- Goals
 - Address issue tickets from uses, answer walk-in questions, provide expert software advice and guidance as needed
- Effort
 - Historically about 0.5 FTE. Believe we have this much work
 - Currently spending ~0.2-0.3 FTE on average integrated across people?

Personnel issues

Lost 1 FTE recently

- Significant decline in effort toward customer support + MT work
- Will have impact on rate at which we deliver on goals

Losing an additional 0.3 FTE in February 2020

- Code and release management
- Working now to re-distribute those
 (+ the other 0.7 FTE of responsibilities going away, some of which impact LArSoft)

Sum of all project plan work

- Full best/worst case range about 1.7 to 5 FTE
- Have about 2 FTE of effort in FY2020 budget

Summary

- Good progress made on 2019 workplan goals
 - An ambitious plan
 - Better than expected progress on several high priority items
 - Did not deliver on a couple of major work items
- Have draft 2020 work plan after consultation with experiments
 - No issues raised at Oct Offline Leads meeting
 - Drafting final version for approval by spokes
- The 2020 plan is also ambitious
 - Loss of effort will have an impact on MT work and customer support
 - Will work with experiments, other collaborators to pick up some of the load

Backup

Where would additional effort go? (i.e., what are we not doing?)

Boosting work within the current plan

- MT work
 - Ensuring that common framework emerges from data-prep + SP work
 - Then pulling some of the relevant code from experiments back into LArSoft
- Build system
- Event display
- Stronger customer support presence

Additional work the project should advance if possible

- Better ML integration
 - Build on work of uB and DUNE to make it a core component of LArSoft
- Better Wire-Cell integration
 - Want to bring core SP / signal induction simulation into LArSoft (many barriers to this)
 - More granular interfacing, more use of common data products
 - Build bridges between imaging and other 3D reco algorithms
- Summer 2020 workshop with intro tutorial, advanced programming, HPC topics