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Motivation

• Missing/Invisible Energy:
• Neutrons can carry away a significant portion of the energy for an event

• Visible energy from neutrons can be delayed and/or manifest as seemingly uncorrelated 
energy depositions in the detector

• Energy resolution is limited by our ability to reconstruct and account for all 
missing energy
• average missing energy varies with interaction type 
• Event-to-event fluctuations

• In ProtoDUNE, the beam instrumentation offers measurement of the 
incident beam particle momentum
• + PID --> Energy measurement

• For DUNE we will have a wide-band neutrino beam ~ few GeV range
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ProtoDUNE vs. DUNE

DUNE
• Underground
• Large decrease in cosmogenic 

backgrounds

• Long-baseline neutrino 
detector
• 𝞶 + A -> lepton + X + hadronic

• ProtoDUNE
• Surface detector
• High cosmic rate

• Charged particle test-beam
• h + A -> many final states

• h = incident hadron
• hadronic = primary hadronic component 
• A = Ar-40 
• X = post-interaction nucleus 
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How do we ”see” neutrons? 

• Quick Answer: Indirectly
• Neutron interactions in LAr typically include:

1. Elastic scattering 
2. Inelastic scattering
3. Capture

• Neutrons produce visible energy via:
• Inelastic scattering resulting in charged particle final states

• E.g. Charge exchange (n+A -> p + X)
• De-excitation gammas - Inelastic scattering resulting in excited nuclear states which 

subsequently decay, emitting photons (Ar* -> Ar + N𝝲)
• Neutron Capture : n + 40Ar -> 41Ar + N𝝲

• ~O(200𝝁s)
• 𝜮E𝜸 = 6MeV
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Photon detection

• Both inelastic scattering and 
neutron capture can produce 
photons which can further 
displace the energy carried 
away by neutrons
• These (few MeV) photons 

typically Compton scatter 
with electrons which are a 
proxy for neutron visible 
energy

5Thermal neutron capture. Kinetic energy = 0.025eV



Other Experiments

• The ArgoNeut collaboration has demonstrated 
reconstruction of low energy physics -> there is 
hope for being able to reconstruct the blips from 
de-excitation/capture gammas 
• https://journals.aps.org/prd/abstract/10.1103/PhysRev

D.99.012002
• At ProtoDUNE energies, neutrons can carry away a 

significant portion of the energy and can be 
identified via charge exchange 
• MiniCaptain collaboration recently published 

neutron cross-section paper
• Main detection mechanism for neutrons in their 100-

800MeV neutron beam was via identification of proton 
candidates from inelastic scattering

• https://arxiv.org/abs/1903.05276
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Backgrounds

• The neutron background has 
both a cosmogenic and a 
beam-induced component
• Each of which have a primary 

and a secondary component
• Primary – neutrons that enter 

the detector
• Secondary – neutrons 

produced by secondary 
interaction by particles such as 
muons within the detector

7

Cosmogenic Beam

Primary 
hadronic 

component
Secondary (all 

others)
Primary 
hadronic 

component
Secondary (all 

others)



Corsika

• Corsika – simulates air 
showers from cosmic rays
• Integrated into Larsoft by 

M. Bass (see [1])
• There is a 50 MeV energy 

cut on all generated 
particles:
• MCC11 less reliable for 

low energy studies
• Have generated my own 

Corsika-only samples
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Changes

• Problems with larsim/LArG4 (Legacy): 
• Neutrons decays in the ProtoDUNE foam
• Scintillation EndProcess() even for neutrons(!) 

• Refactored framework – I enabled the use of the refactored larg4 in 
the ProtoDUNE simulation chain (see my collaboration meeting talk) 
as an alternative to Legacy
• No more neutron decays or overuse of Scintillation process
• Access to reference physics lists e.g. QGSP_BERT_HP
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Some definitions

• Candidates: the protons and e∓ that deposit visible energy and can be from 
neutron origin
• Progenitor: The candidate’s ancestor (from the notion of “parentage” in 

larsoft; mother and daughter particles)
• Provenance: the reaction chain yielding the candidate protons, electrons, 

or positrons. For example: 
• Signal proton provenance : 𝑛 + )*

+,𝐴𝑟 → 𝑋 + 𝑝
• Signal e∓provenance          : 𝑛 + )*

+,𝐴𝑟 → 𝑋 + 𝛾 → 𝑋 + 𝑒∓

• X represents everything else
• I will typically neglect the nuclei when noting the provenance

• E.g. : (𝑛 + )*
+,𝐴𝑟 → 𝑋 + 𝑝) ↔ (𝑛 → 𝑝)
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Backgrounds
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True neutron backgrounds

• Candidates that have the same provenance as the signal but with 
neutrons that are not from the primary particle in question (e.g. 𝜋+)
• These backgrounds have a primary and secondary neutron component

• E.g. :
• Primary cosmic neutrons
• Beam-induced neutrons (“punch-through” from collisions with the target)
• neutrons from photo-nuclear breakup: 𝛾 + )*

+,𝐴𝑟 → 𝑋 + 𝑛
• These photons themselves can be from e- Bremsstrahlung 
• Photons from 𝜋0 decays
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Backgrounds (continued)

• Backgrounds = neutron backgrounds + Other
• Others = candidates from any provenance and without a neutron

progenitor
• E.g. : (𝑒±→ 𝛾 → 𝑒∓) or (𝜋9→ 𝑝)

• I will be focusing on the (signal + neutron backgrounds) for this talk
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Analysis Approach

• Monte Carlo study
• Simple approach, focusing on TPC simulations (no photon simulation)
• Start with hits (hitpdune – disambiguated gausshit)
• All hits are backtracked to the trackID contributing the largest portion 

of the deposited energy and the provenance is determined
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Samples

• Particle gun (single 𝜋 -, 10k evts)
• CORSIKA (600 full cmc simulation)
• 1GeV Negative Beam + beam backgrounds (12k evts)
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Negative 1GeV pion, single particle (10k 
events)
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e± Candidate Energy Depositions

• Only pi- are simulated
• 10,000 events
• All electrons/positrons included
• Includes electrons from hadronic 

ionization from the pi- themselves
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Signal e±

• 𝑒± from de-excitation / 
capture gammas with 
neutron progenitors are 
low energy
• Very few above 10MeV
• Mostly produced through

Compton scatters
• conv – photon pair -

production
• phot – photoelectrically 

produced
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Compton edge

• 39Ar has a 565keV endpoint 
(200 keV peak)
• ~1/5 of these e^{\pm} have 

kinetic energies below 565keV
• Large Compton edge around 

1.24 MeV is predominantly 
from Ar40 transitions from 1st

excited state to the ground 
state (see next slide)
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Photon energies from neutron processes

• Includes photons from 
both neutron-inelastic
and neutron capture
processes
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Argon-40 Energy Levels

• 1st excited state: 1.46MeV
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Background e± candidates

• Including all e± all descending 
from the primary beam pi-
• 5.5% are ionization e- from the

passage of the pion itself
(secondary e-, no grandmother 
particle)
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Proton candidate energy deposits

• Only pi- are simulated
• 10,000 events
• Protons with neutron and non-

neutron mothers
• Large majority of these are 

from pi- inelastic interactions 
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Cone cut for protons from 1GeV, pi-

• Cone cut:
• Right Cone with axis in the beam 

direction
• z < 230cm, only candidates 

contained within the first APA
• Protons from pi- inelastic 

scattering not considered bkg
since these have connected pi-
and proton tracks
• Protons from neutrons are 

topologically separate from 
primary pi- tracks
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Elec/positron Non-neutron 
and not from 
muon 
ionization or 
hadronic 
ionization (A)

Non-neutron 
but from 
muon or 
hadronic 
ionization
(B)

With neutron 
progenitor (S)

Total
(T = A+B+S)

Avg. signal 
candidate hits 
per event
(S/10k)

Signal/bkg
(S/(A+B))

Cone cut 172607 55858 252839 481304 25.3 1.1

Cone cut + 
565 keV < KE 
< 10 MeV

160123 55799 225965 441187 22.6 1.0

Number of candidates hits (1GeV, pi- only sample, 10k evts)

proton Non-neutron
(not really bkg*)

With neutron 
progenitor (S)

Total Avg. signal 
protons hits per 
event (S/10k)

Cone cut 273952 33282 307234 3.3

Cone + KE>21 
MeV

265738 26762 292500 2.7

* For 𝜋→p expect no separation between incoming pion and outgoing proton, whereas protons from neutrons 
will have separation



Full CORSIKA, CMC 600 events
(Purely Background)
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e± candidate depositions

• All electrons/positron ionization 
depositions
• 600 events with the full Constant 

Mass Composition Model from our 
Corsika generator in ProtoDUNE
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Low Energy e±

• Kinetic energies for e±

candidates with neutron 
progenitor
• Compton edge also visible

here (from neutron bkg)
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Proton candidate energy depositions

• Includes all protons:
• Primary, secondary, and higher order 

protons

• Purely background
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Cone cut on e± candidates

• 600 Corsika evts
• Two cuts:

• z < 230cm, only candidates 
contained within the first APA

• KE < 10MeV

• Red = e± with neutron 
progenitor (true neutron bk)
• Magenta = e± from muon or 

hadronic ionization
• Green = all other e±
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Cone cut on cosmic bkg proton candidates

• Only protons in z < 230 cm
• Cone cut along beam direction
• 600 evts
• All bkg proton candidates

distributed within 74 of the 600 
events
• Most of the cone cuts in the 600 evts

have no protons from cosmic 
backgrounds

• Blue = protons with neutron
progenitor (true neutron 
component)
• Green = protons from all other 

provenances
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Elec/positron Non-neutron 
and not from 
muon 
ionization or 
hadronic 
ionization (A)

Non-neutron 
but from 
muon or 
hadronic 
ionization (B)

With neutron 
progenitor (C)

Total 
(D = A+B+C)

Avg. per 
event (D/600)

Cone cut + 
KE<10MeV

9007 5594 2160 16761 27.9

Cone cut + 
565keV < KE < 
10MeV

8157 5566 2006 15729 26.2

Number of candidate hits, cosmics, 600 evts

proton Non-neutron 
(A)

With neutron 
progenitor (B)

Total 
(C=A+B)

Avg. per event
(C/600)

Cone Cut 0 360 360 0.6

Cone cut + KE > 
21MeV

0 298 298 0.5



BACKUP
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Beam + Beam Bkg, 12k events (2300 pi-)

34



e± candidates depositions

• 12000 events
• Includes mainly beam electrons
• 2300 pi- events
• Beam backgrounds e.g. halo muons 

and punch-through neutrons
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All proton candidates

• Most protons come from the
2300 pi- events
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