ProtoDUNE Neutron Study Update

David Rivera

University of Pennsylvania

November 21, 2019

Motivation

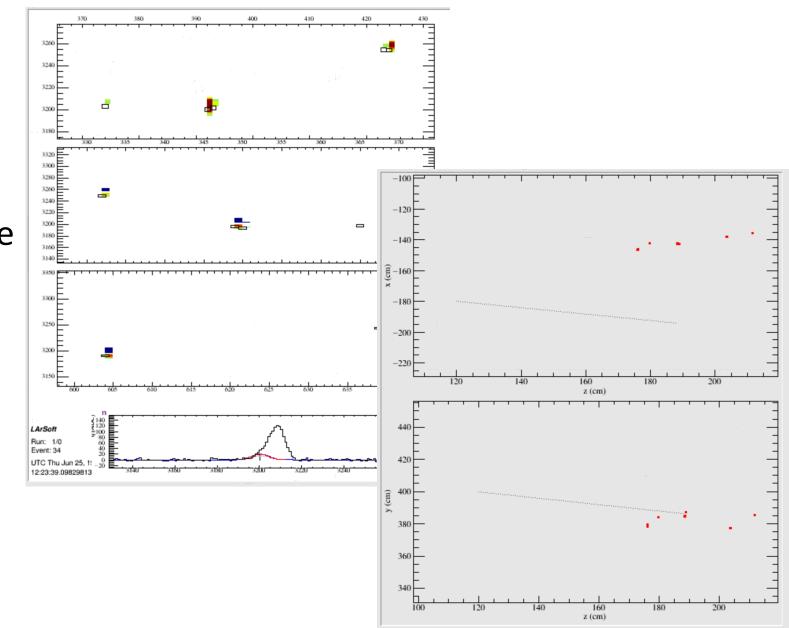
- Missing/Invisible Energy:
 - Neutrons can carry away a significant portion of the energy for an event
 - Visible energy from neutrons can be delayed and/or manifest as seemingly uncorrelated energy depositions in the detector
 - Energy resolution is limited by our ability to reconstruct and account for all missing energy
 - average missing energy varies with interaction type
 - Event-to-event fluctuations
- In ProtoDUNE, the beam instrumentation offers measurement of the incident beam particle momentum
 - + PID --> Energy measurement
- For DUNE we will have a wide-band neutrino beam ~ few GeV range

ProtoDUNE vs. DUNE

- ProtoDUNE
- Surface detector
 - High cosmic rate
- Charged particle test-beam
- h + A -> many final states

- h = incident hadron
- hadronic = primary hadronic component
- A = Ar-40
- X = post-interaction nucleus

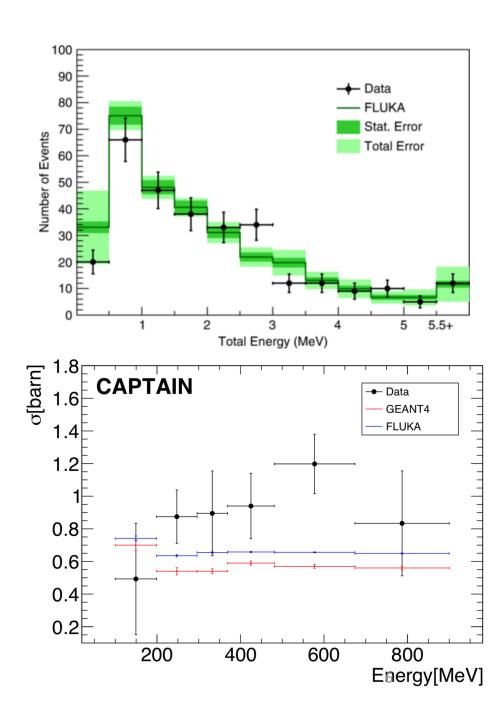
DUNE


- Underground
 - Large decrease in cosmogenic backgrounds
- Long-baseline neutrino detector
- *v* + A -> lepton + X + hadronic

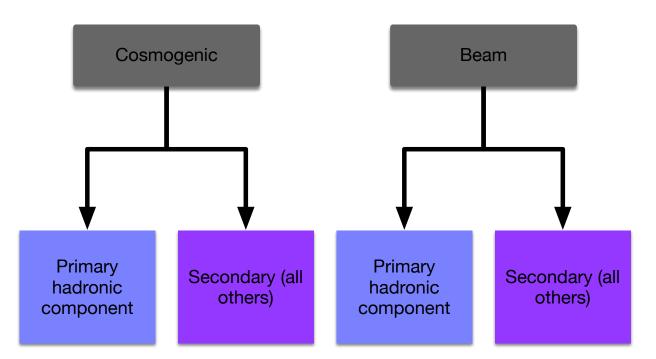
How do we "see" neutrons?

- Quick Answer: Indirectly
- Neutron interactions in LAr typically include:
 - 1. Elastic scattering
 - 2. Inelastic scattering
 - 3. Capture
- Neutrons produce visible energy via:
 - Inelastic scattering resulting in charged particle final states
 - E.g. Charge exchange (n+A -> p + X)
 - De-excitation gammas Inelastic scattering resulting in excited nuclear states which subsequently decay, emitting photons (Ar* -> Ar + Nγ)
 - Neutron Capture : n + 40Ar -> 41Ar + Nγ
 - ~O(200µs)
 - $\Sigma E_{\gamma} = 6 MeV$

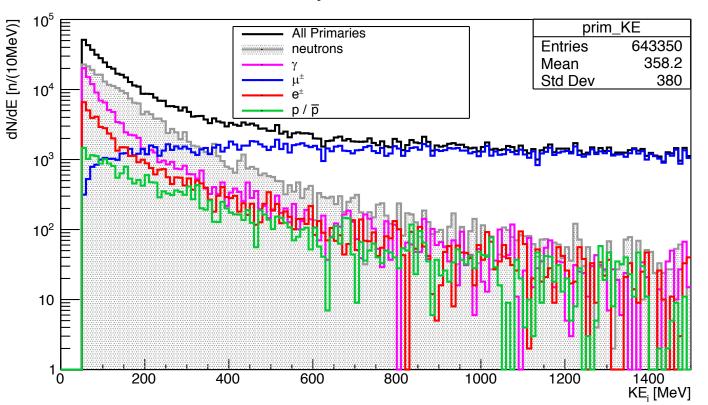
Photon detection


- Both inelastic scattering and neutron capture can produce photons which can further displace the energy carried away by neutrons
- These (few MeV) photons typically Compton scatter with electrons which are a proxy for neutron visible energy

Thermal neutron capture. Kinetic energy = 0.025eV


Other Experiments

- The ArgoNeut collaboration has demonstrated reconstruction of low energy physics -> there is hope for being able to reconstruct the blips from de-excitation/capture gammas
 - https://journals.aps.org/prd/abstract/10.1103/PhysRev D.99.012002
- At ProtoDUNE energies, neutrons can carry away a significant portion of the energy and can be identified via charge exchange
- MiniCaptain collaboration recently published neutron cross-section paper
 - Main detection mechanism for neutrons in their 100-800MeV neutron beam was via identification of proton candidates from inelastic scattering
 - https://arxiv.org/abs/1903.05276


Backgrounds

- The neutron background has both a cosmogenic and a beam-induced component
- Each of which have a primary and a secondary component
 - Primary neutrons that enter the detector
 - Secondary neutrons produced by secondary interaction by particles such as muons within the detector

Corsika

- Corsika simulates air showers from cosmic rays
- Integrated into Larsoft by M. Bass (see [1])
- There is a 50 MeV energy cut on all generated particles:
 - MCC11 less reliable for low energy studies
 - Have generated my own Corsika-only samples

Primary Initial KE, Corsika

Changes

- Problems with larsim/LArG4 (Legacy):
 - Neutrons decays in the ProtoDUNE foam
 - Scintillation EndProcess() even for neutrons(!)
- Refactored framework I enabled the use of the refactored larg4 in the ProtoDUNE simulation chain (see my collaboration meeting <u>talk</u>) as an alternative to Legacy
 - No more neutron decays or overuse of Scintillation process
 - Access to reference physics lists e.g. QGSP_BERT_HP

Some definitions

- Candidates: the protons and e[∓] that deposit visible energy and can be from neutron origin
- **Progenitor:** The candidate's ancestor (from the notion of "parentage" in larsoft; mother and daughter particles)
- **Provenance:** the reaction chain yielding the candidate protons, electrons, or positrons. For example:
 - Signal proton provenance : $n + \frac{40}{18}Ar \rightarrow X + p$
 - Signal e^{\mp} provenance $: n + \frac{40}{18}Ar \rightarrow X + \frac{1}{\gamma} \rightarrow X + e^{\mp}$
- X represents everything else
- I will typically neglect the nuclei when noting the provenance
 - E.g.: $(n + {}^{40}_{18}Ar \rightarrow X + p) \leftrightarrow (n \rightarrow p)$

Backgrounds

True neutron backgrounds

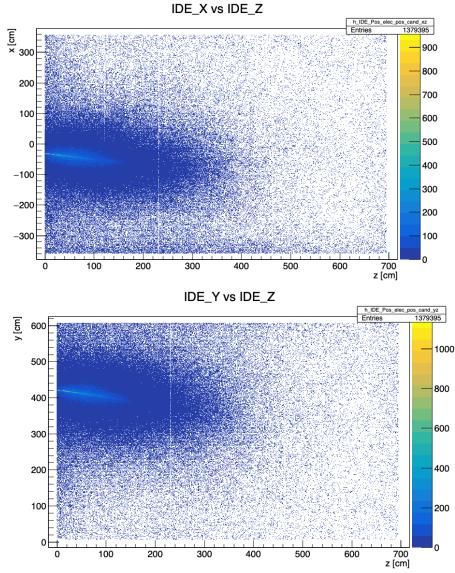
- Candidates that have the same *provenance* as the signal but with neutrons that are not from the primary particle in question (e.g. π^+)
 - These backgrounds have a primary and secondary neutron component
- E.g. :
 - Primary cosmic neutrons
 - Beam-induced neutrons ("punch-through" from collisions with the target)
 - neutrons from photo-nuclear breakup: $\gamma + \frac{40}{18}Ar \rightarrow X + n$
 - These photons themselves can be from e⁻ Bremsstrahlung
 - Photons from π^0 decays

Backgrounds (continued)

- Backgrounds = neutron backgrounds + Other
- Others = candidates from any provenance and without a neutron progenitor
 - E.g. : $(e^{\pm} \rightarrow \gamma \rightarrow e^{\mp})$ or $(\pi^+ \rightarrow p)$
- I will be focusing on the (signal + neutron backgrounds) for this talk

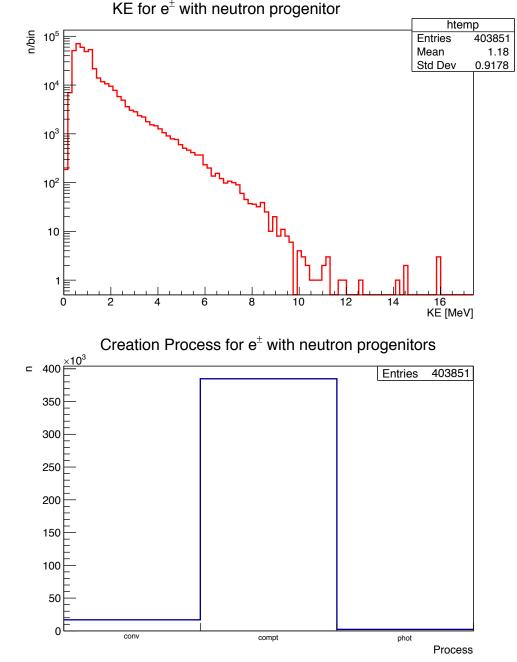
Analysis Approach

- Monte Carlo study
- Simple approach, focusing on TPC simulations (no photon simulation)
- Start with hits (hitpdune disambiguated gausshit)
- All hits are backtracked to the trackID contributing the largest portion of the deposited energy and the provenance is determined

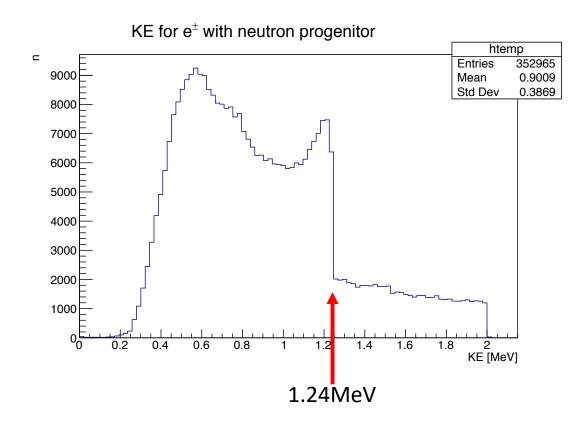

Samples

- Particle gun (single π ⁻, 10k evts)
- CORSIKA (600 full cmc simulation)
- 1GeV Negative Beam + beam backgrounds (12k evts)

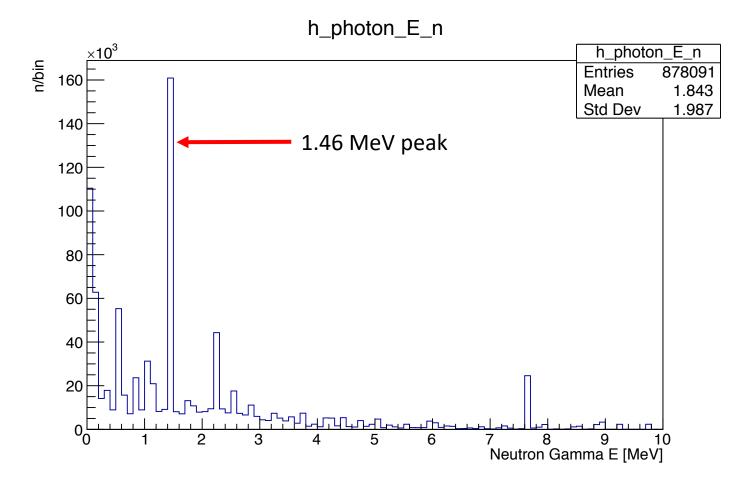
Negative 1GeV pion, single particle (10k events)


e[±] Candidate Energy Depositions

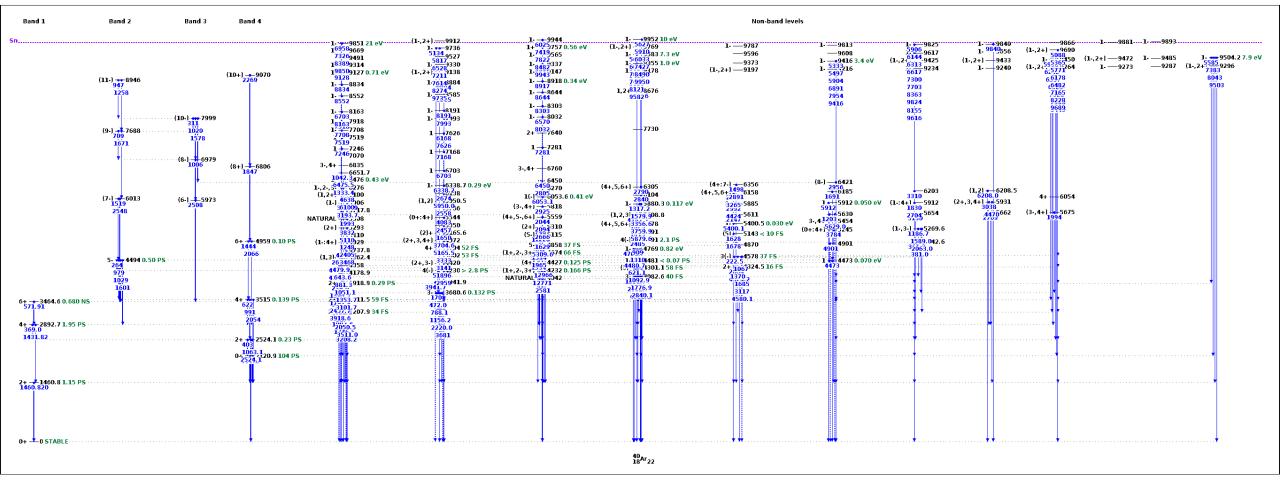
- Only pi- are simulated
- 10,000 events
- All electrons/positrons included
- Includes electrons from hadronic ionization from the pi- themselves


Signal e[±]

- e[±] from de-excitation / capture gammas with neutron progenitors are low energy
 - Very few above 10MeV
 - Mostly produced through Compton scatters
- conv photon pair production
- phot photoelectrically produced

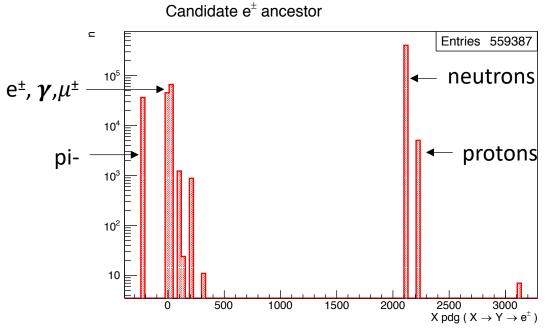

Compton edge

- ³⁹Ar has a 565keV endpoint (200 keV peak)
- ~1/5 of these e^{\pm} have kinetic energies below 565keV
- Large Compton edge around 1.24 MeV is predominantly from Ar40 transitions from 1st excited state to the ground state (see next slide)

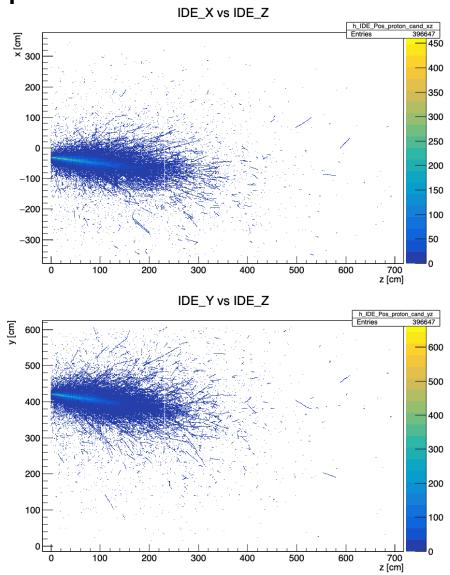


Photon energies from neutron processes

 Includes photons from both neutron-inelastic and neutron capture processes

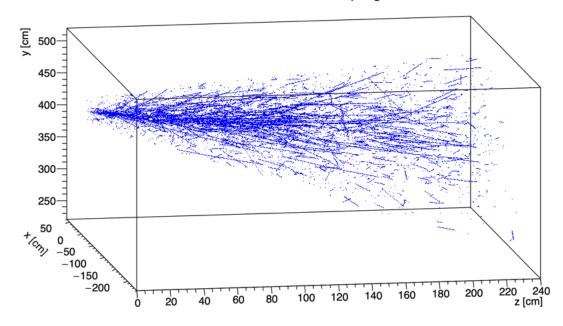

Argon-40 Energy Levels

• 1st excited state: 1.46MeV


Background e[±] candidates

- Including all e[±] all descending from the primary beam pi-
- 5.5% are ionization e- from the passage of the pion itself (secondary e-, no grandmother particle)

Proton candidate energy deposits


- Only pi- are simulated
- 10,000 events
- Protons with neutron and nonneutron mothers
- Large majority of these are from pi- inelastic interactions

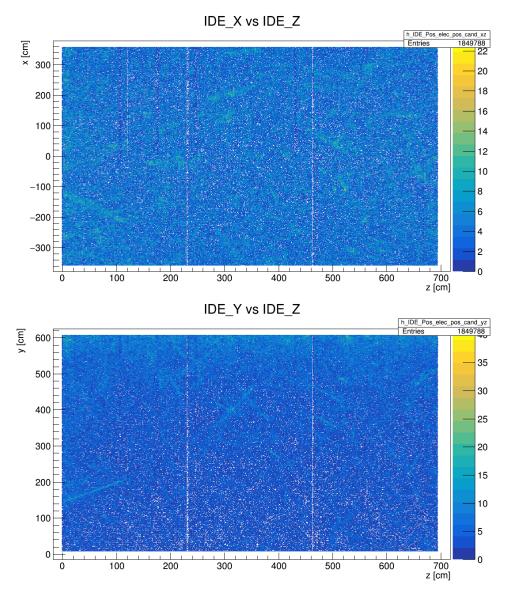
Cone cut for protons from 1GeV, pi-

- Cone cut:
 - Right Cone with axis in the beam direction
 - z < 230cm, only candidates contained within the first APA
- Protons from pi- inelastic scattering not considered bkg since these have connected piand proton tracks
- Protons from neutrons are topologically separate from primary pi- tracks

Proton candidates with neutron progenitor

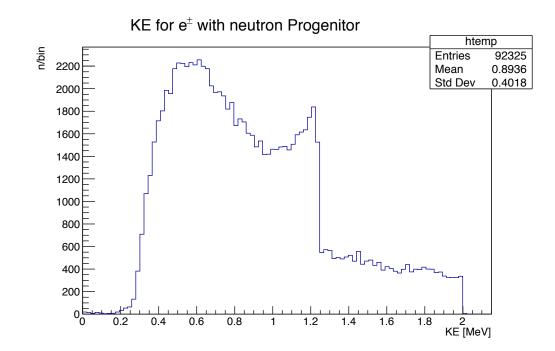
Number of candidates <u>hits</u> (1GeV, pi- only sample, 10k evts)

Elec/positron	Non-neutron and not from muon ionization or hadronic ionization (A)	Non-neutron but from muon or hadronic ionization (B)	With neutron progenitor (S)	Total (T = A+B+S)	Avg. signal candidate hits per event (S/10k)	Signal/bkg (S/(A+B))
Cone cut	172607	55858	252839	481304	25.3	1.1
Cone cut + 565 keV < KE < 10 MeV	160123	55799	225965	441187	22.6	1.0

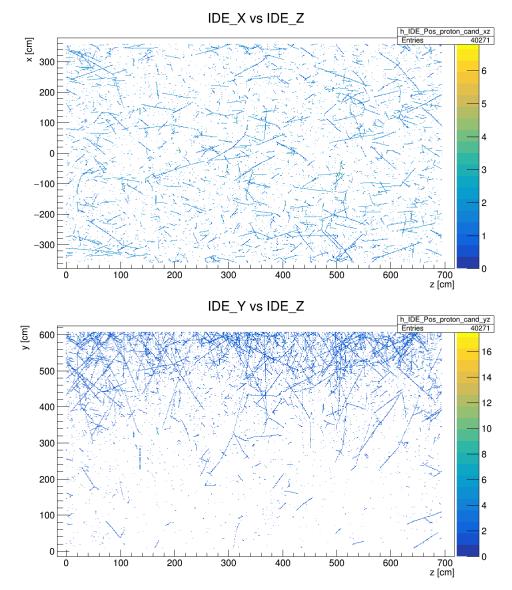

proton	Non-neutron (not really bkg [*])	With neutron progenitor (S)	Total	Avg. signal protons hits per event (S/10k)
Cone cut	273952	33282	307234	3.3
Cone + KE>21 MeV	265738	26762	292500	2.7

* For $\pi \rightarrow p$ expect no separation between incoming pion and outgoing proton, whereas protons from neutrons will have separation

Full CORSIKA, CMC 600 events (Purely Background)


e[±] candidate depositions

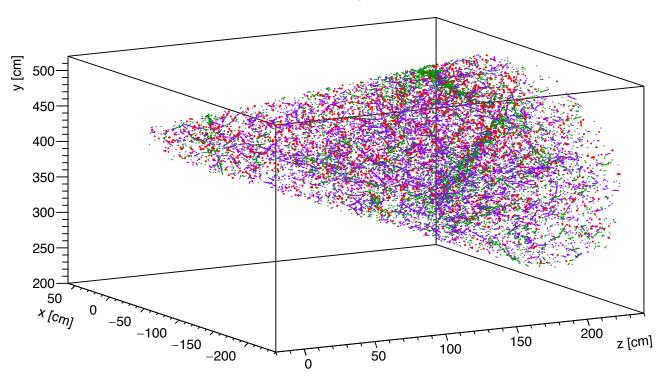
- All electrons/positron ionization depositions
- 600 events with the full Constant Mass Composition Model from our Corsika generator in ProtoDUNE


Low Energy e[±]

- Kinetic energies for e[±] candidates with neutron progenitor
- Compton edge also visible here (from neutron bkg)

Proton candidate energy depositions

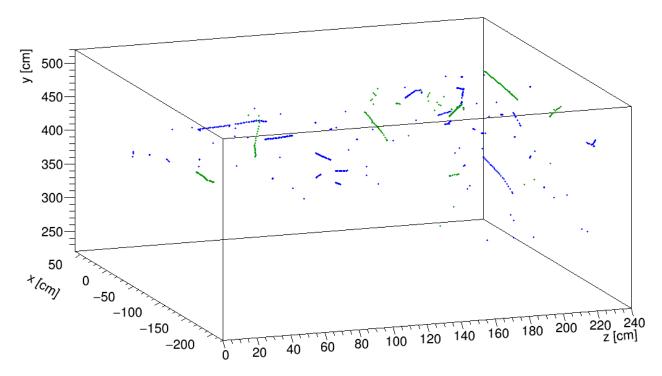
- Includes all protons:
 - Primary, secondary, and higher order protons
- Purely background



Cone cut on e[±] candidates

• 600 Corsika evts

- Two cuts:
 - z < 230cm, only candidates contained within the first APA
 - KE < 10MeV
- Red = e[±] with neutron progenitor (true neutron bk)
- Magenta = e[±] from muon or hadronic ionization
- Green = all other e[±]


Candidate Ionization Deposition Event locations

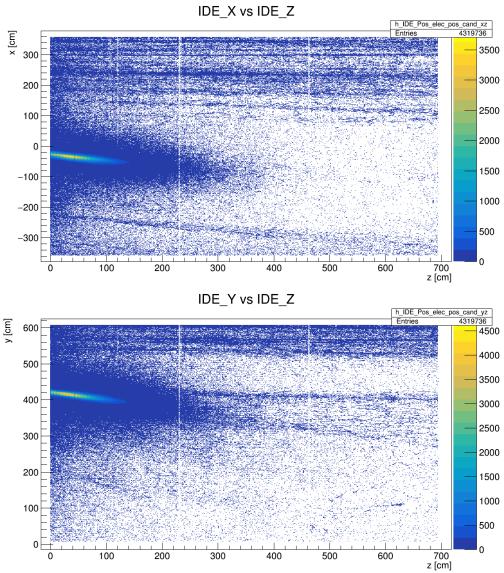
Cone cut on cosmic bkg proton candidates

- Only protons in z < 230 cm
- Cone cut along beam direction
- 600 evts
- All bkg proton candidates distributed within 74 of the 600 events
 - Most of the cone cuts in the 600 evts have no protons from cosmic backgrounds
- Blue = protons with neutron progenitor (true neutron component)
- Green = protons from all other provenances

CandIDEY:CandIDEX:CandIDEZ {Pdg==2212 && CandIDEZ<230 && isInCone==1 && (Mother==2112)}

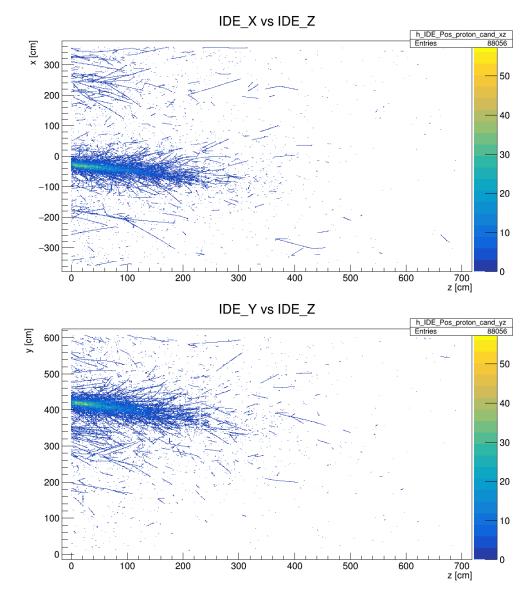
Number of candidate <u>hits</u>, cosmics, 600 evts

Elec/positron	Non-neutron and not from muon ionization or hadronic ionization (A)	Non-neutron but from muon or hadronic ionization (B)	With neutron progenitor (C)	Total (D = A+B+C)	Avg. per event (D/600)
Cone cut + KE<10MeV	9007	5594	2160	16761	27.9
Cone cut + 565keV < KE < 10MeV	8157	5566	2006	15729	26.2


proton	Non-neutron (A)	With neutron progenitor (B)	Total (C=A+B)	Avg. per event (C/600)
Cone Cut	0	360	360	0.6
Cone cut + KE > 21MeV	0	298	298	0.5

BACKUP

Beam + Beam Bkg, 12k events (2300 pi-)


e[±] candidates depositions

- 12000 events
- Includes mainly beam electrons
- 2300 pi- events
- Beam backgrounds e.g. halo muons and punch-through neutrons

All proton candidates

• Most protons come from the 2300 pi- events

