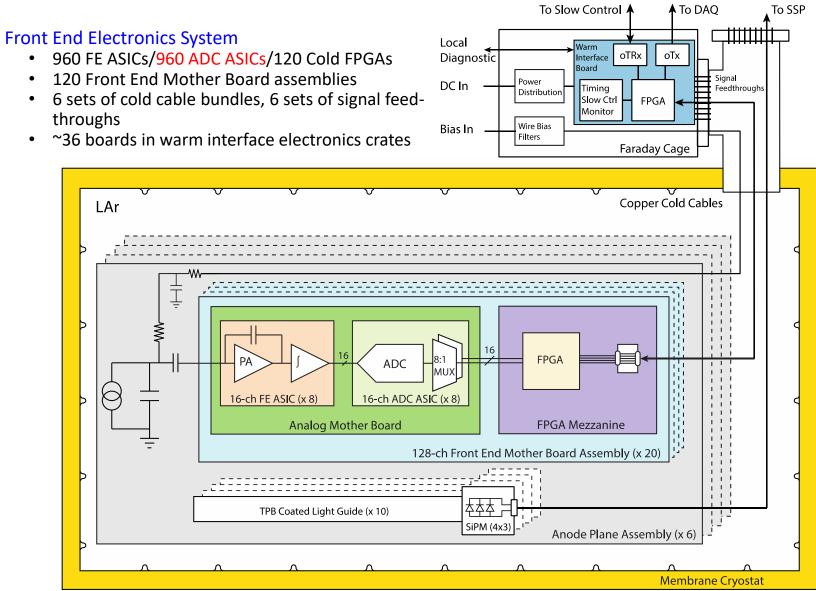
ProtoDUNE-SP FEMB

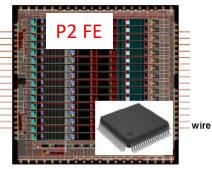
Research, Development, Production, Installation and Commissioning

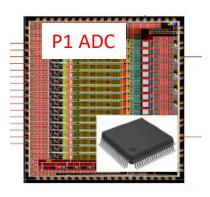
Shanshan Gao on behalf of the CE group


Brookhaven National Laboratory

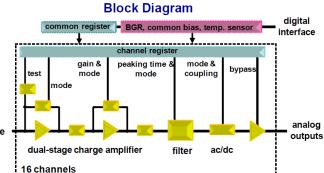
02/06/2020

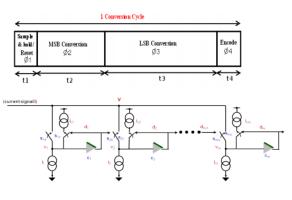
Outline


- ProtoDUNE-SP TPC Readout Electronics
- Integral System Design Concept
- QC Procedure for FEMB Production
 - QC Plan and Procedure
 - QC Test Stands
 - QC Tests for Components
 - QC Tests for FEMB Assembly
 - FEMB Installation Failure at CERN
- ProtoDUNE-SP CE Status in Detector Operation
- Summary


ProtoDUNE-SP TPC Readout Electronics

•


Key CMOS Devices of CE



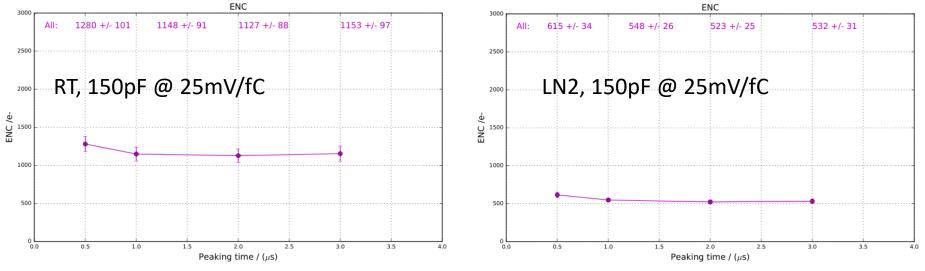
FPGA (COTS) 2020/02/06

Voltage Regulator (COTS) (< 100mV dropout) 16 channels, programmable Charge amplifier Adjustable gain: 4.7, 7.8, 14, 25mV/fC Adjustable filter time constant Designed for 77K-300K operation Designed for long lifetime Tech. CMOS 180 nm, 1.8 V, 6M, MIM, SBRES

16 channels, programmable 12-bit ADC at 2MS/s sampling rate Current-mode domino architecture Designed for 77-300K operation Tech. CMOS 180nm, 1.8 V, 6M, MIM, SBRES Low resolution due to stuck codes Development discontinued after

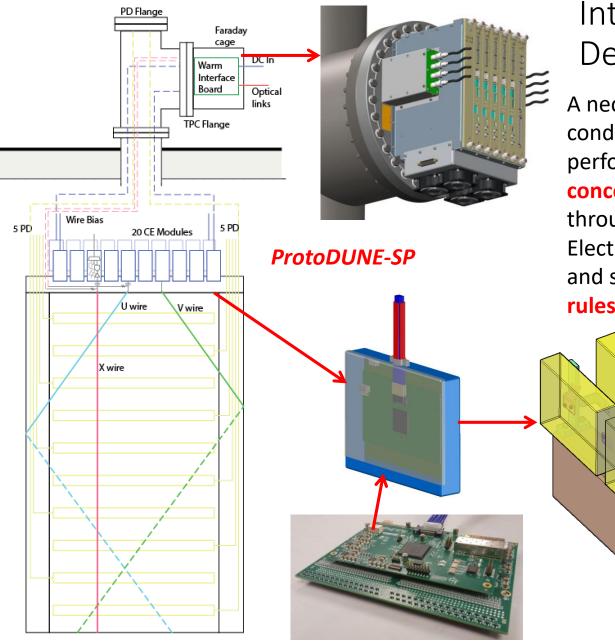
Commercial FPGA and regulator study

- 1. Screening various commercial devices to find survivors at LN2 temperature (77K)
- 2. Lifetime study


ProtoDUNE-SP

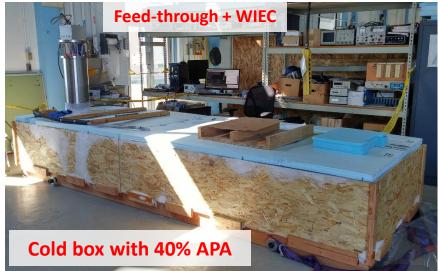
- → Hot Carrier Effect is the dominant degradation at cryogenic temperature
- → Extreme environment to accelerate the degradation process

Front End Mother Board (FEMB) Assembly


- 128 channels of digitized TPC wire readout
 - Analog Mother Board
 - 8 FE ASICs and 8 ADC ASICs
 - FPGA Mezzanine
 - Multiplexing and readout of digitized detector signals
 - 4x1Gb/s serial links to transmit 128 FE channels of data

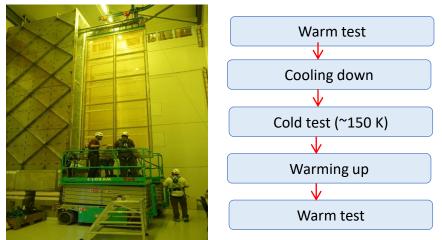
~1150e⁻ at RT and ~550e⁻ at LN2 @ 1us peaking time, 25mV/fC gain and 150pF C_d

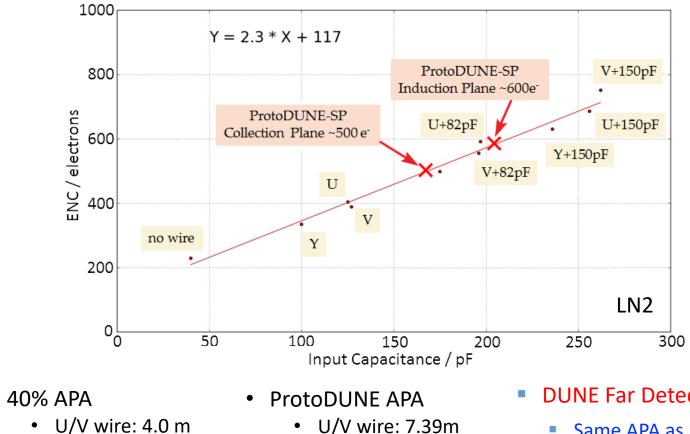
Noise decreases significantly at cryogenic temperature


Integral System Design Concept

A necessary (but not sufficient!) condition to achieve a good performance, the integral design concept of APA + CE + Feedthrough, plus Warm Interface Electronics with local diagnostics and strict isolation and grounding rules will have to be followed

> Cold electronics module and its attachment to the APA frame


Integration Test Stands at BNL and CERN


40% APA: 2.8m x 1.0m, 1024 wires

DUNE APA: 6m x 2.3m, 2560 wires

ENC Projection Based on 40% APA

• Y wire: 2.8m

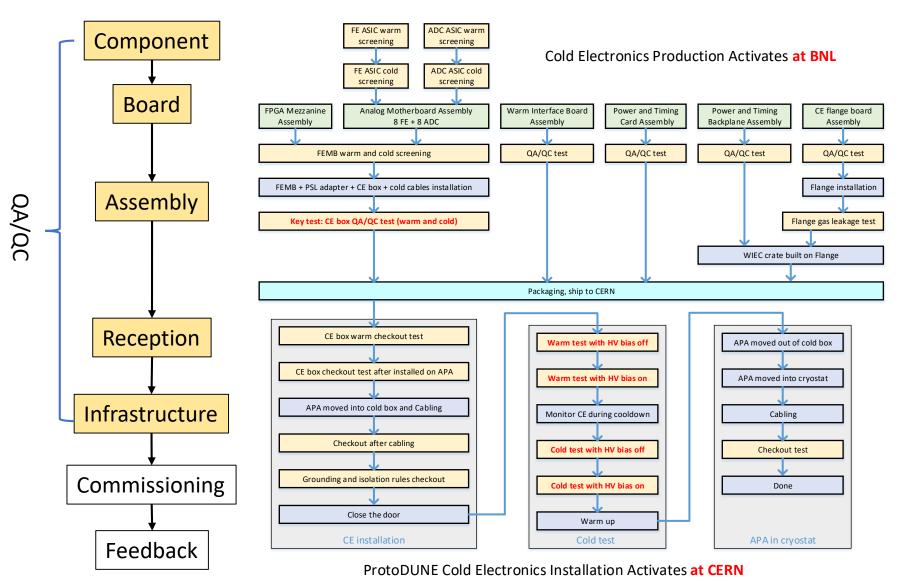

Note: 82pF and 150pF mica capacitors are added on some wires • Y wire: 6.0m

- **DUNE** Far Detector
 - Same APA as ProtoDUNE-SP
 - Threshold: 1,000 e⁻
 - Goal: as low as possible

٠

CERN Cold Box Integration Test

APA2 (2018-01) Cold nitrogen gas with lowest temperature reached ~ 159K



- 1. Uniform gain (77 e-/bin) is applied for calculating noise of all channels
- 2. HV Bias voltages were off
- 3. Data are read out chip by chip over local diagnostic GbE port.

QC Procedure for FEMB Production

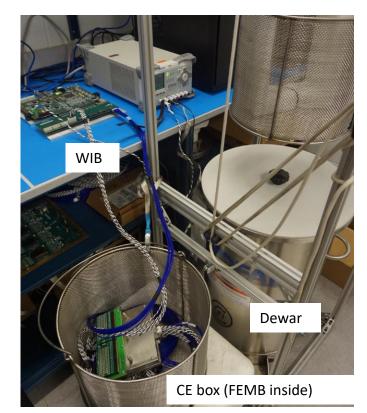
- A comprehensive set of QA/QC tests carried out for all components to ensure reliable operation of FEMB in the ProtoDUNE-SP detector
 - FE & ADC ASIC screening test
 - Characterization both at room temperature and liquid nitrogen temperature
 - FE: baseline, noise, gain, linearity, peaking time, power consumption
 - ADC: DNL, INL, range, power consumption
 - Oscillator cold screening test
 - EPCS serial configuration memory cold screening test
 - Chip to configurate Altera FPGA, not needed for DUNE
 - FEMB QA/QC procedures
 - Post-assembly screening test before installation in CE box
 - Get rid of defective FEMB assemblies
 - Characterization both at RT and LN2 after assembly
 - A whole assembly includes FEMB, CE box, cold power cable and data cable

Procedure for CE Production and Installation

Test Stands for QC

Quad Socket FE Test Setup (RT)

Cryogenic Test System 2020/02/06


Quad Socket ADC Test Setup (RT)

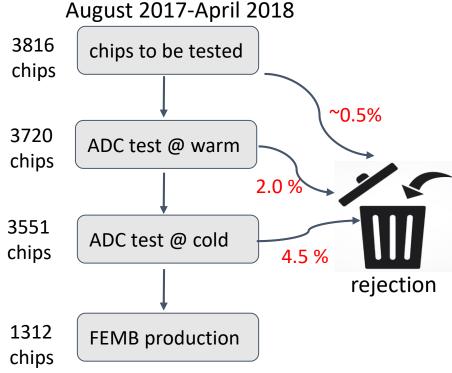
WIB Functionality Check

XO Cold Test Board S.Gao - ProtoDUNE-SP FEMBs

FEMB Test Setup (RT & LN2)

EPCS Cold Screening Test Board

P2 FE ASIC QC for ProtoDUNE-SP


- FE ASIC chips for APA1 to APA5 passed QC test at RT
 - Criteria for passing: selection cuts for uniform FE response
 - Combine results over many ASIC test cycles for each channel to get expected pedestal, gain and ENC distributions
 - Reject ASICs with any of those values >5 sigma from channel expected response
 - 1,850 chips tested at warm
 - Rejected ~113 (5.6%) with warm selection cuts
 - Thermal cycle test on FEMB rejected and replaced FE failed at LN2
 - On average, 1 chip on two FEMBs (8x2) failed at LN2 (~6%)
- FE ASIC chips for APA6 passed QC test at both RT and LN2
 - Rejected ~4% of the FE ASICs in the cold screening test
 - Collection baseline < 100 mV
 - Failed to observe calibration pulse
 - Power cycle failure (start-up issue)
 - Input pin dead to external pulse
 - Only 1 FE ASIC replaced on all 21 FEMBs for APA6 (~0.6%)
- FE ASICs were tested under the thermal cycle (RT --> LN2) on FEMB

P1 ADC (Development discontinued after ProtoDUNE-SP) QC Results

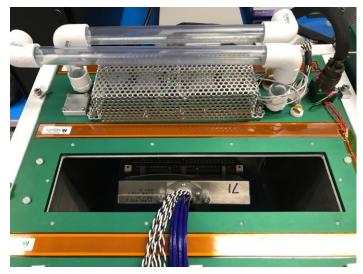
Just a reference for DUNE new ADC QC

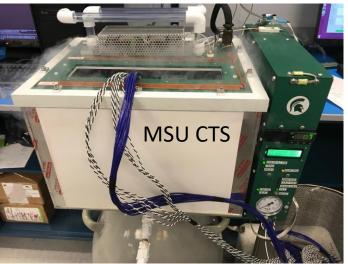
Criteria for passing:

- ADC functionality with 1 & 2MHz internal/external clocks for all channels
- Slow external ramp input for detailed ADC linearity and stuck code calibration

Single-socket ADC test board ADC Failure Mode

Temperature	Failure	# of chips
Total Handing failures	mostly drops	~20 (of 3816) 0.5%
RT	Only ½ of dynamic range worked	11
RT	SPI readback didn't match	28
RT	Sync failure	14
RT	Bad channel (no WF)	23
Total RT failures		76 (of 3816) 2.0%
СТ	Bad input pin (high ADC count)	72
СТ	SPI readback didn't match	39
СТ	Sync failure	24
СТ	Bad channel (no WF)	29
СТ	Large rollback	5
Total CT failures		169 (of 3720) 4.5%


Ranked by Q metric, 37% selected for production

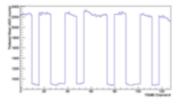

Oscillator and Flash Cold Screening Test

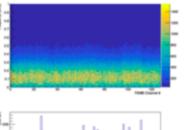
- Oscillator cold screening
 - 700 XO were tested over 175 test runs on a quad socket XO test board
 - ~450 were accepted for FEMBs (64%)
- Flash memory cold screening (Not needed for DUNE FEMB)
 - The FPGA mezzanine has one Altera EPCS64 flash memory to load firmware on power up
 - 860 chips were tested over 216 test runs on a quad socket flash test board
 - ~190 were accepted for FEMBs (22%)

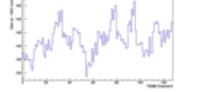
FEMB QC Tests

- Power cycle test
 - Power to FEMB cycled and simple baseline measurement performed
 - 5 iterations
- Gain/ENC measurements
 - 17 separate gain/ENC measurements performed with different combinations of configurations
 - Gain: 14mV/fC, 25mV/fC
 - Shaping time: 0.5us, 1.0us, 2.0us, 3.0us
 - Both FPGA-DAC and ASIC-DAC calibration
 - One check of internal ADC clocks using nominal FE settings
- Power / current monitoring
 - Reads back FEMB voltages/currents measured on WIB
- Summary PDF of test results created as part of the test automatically

Sample FEMB Test Summary


protoDUNE FEMB QC Summary: CE Box 3


Timestamp: 2	01708	1 OT 16	1005	Т	ested i	by: Ma	tt Bas	s	Temperature: RT
Analog MB ID	9	F	PGA N	lezz II): 22				
FE ASICS:	195	197	199	200	201	202	203	160	
ADC ASICS:	70	41	67	13	380	55	110	379	


Average ENC measured with internal pulser (electrons)

	0.5 us	1 us	2 us	3 us
14 mV/fC	1794	1270	1098	1115
25 mV/fC	1928	1223	1089	1111

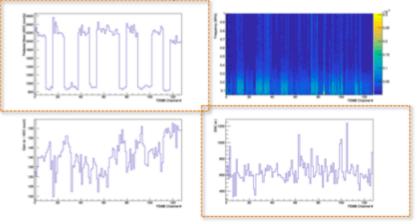
Gain/ENC Measurement: Gain = 14 mV/fC, Shaping Time = 1 us, Internal Pulser

Current Monitoring:

Nominal Voltage	4.2 V	3 V	2.5 V	1.5 V	5 V
Voltage (V):	4.22	3.01	2.49	1.50	4.99
Current (A):	0.05	0.37	1.34	0.53	0.03

Data stored on hothdaq1:

/dsk/l/data/oper/femb/wib_sbnd_v109_femb_protodune_v308/20170810T161005 Position on WIB for test: 1


protoDUNE FEMB QC Summary: CE Box 3

Timestamp: 2	01708	10T17	3247	Т	ested	by : Ma	tt Bas	s	Temperature: CT
Analog MB ID	: 9	F	PGA N	Aezz IC): 22				
FE ASICS:	195	197	199	200	201	202	203	160	
ADC ASICS:	70	41	67	13	380	55	110	379	

Average ENC measured with internal pulser (electrons)

	0.5 us	1 us	2 us	3 us
14 mV/fC	96.9	719	637	653
25 mV/fC	926	650	589	601

Gain/ENC Measurement: Gain = 14 mV/IC, Shaping Time = 1 us, Internal Pulser

FEMB power cycled 5 times at beginning of data collection with no failure.

Current Monitoring:					
Nominal Voltage	4.2 V	3 V	2.5 V	1.5 V	5 V
Voltage (V):	4.06	2.89	2.40	1.44	4.80
Current (A):	0.06	0.40	1.11	0.48	0.01

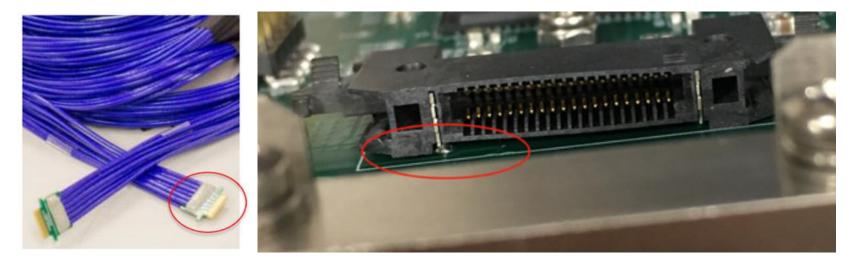
Data stored on hothdaq1: reprocess/dsk/1/data/oper/lemb/wilb_sbnd_v109_femb_protodune_v308/20170810T173247 Position on WIB for test: 1

From Elizabeth Worcester

FEMB QC Test Results

- 25 FEMBs for APA1 tested warm in August 2017 (2.5 weeks)
 - 23 shipped to CERN
 - Rejected 2 because of ADC sync issues later resolved
- 124 production FEMBs tested warm and cold from 11/2017-4/2018
 - Rate dictated by APA delivery schedule which dictated ADC selections
 - Took about 2 hours to take/analyze data including the cryo cycle

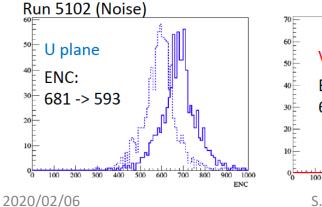
Stage	# pass	# fail	Example failures
RT pre-screen	141	8	Bad connector to FM, short on AM, excess low frequency noise, FE SPI fails on ½ AM
CT pre-screen	139	2	Bad connector to FM, sync failure on ½ AM
Dressed QC	135	4	Excess low frequency noise, ADC sync failures, single bad channels
At CERN	120+1	13+1	See next slide

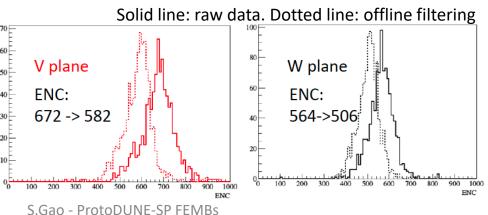

Summary of Failed FEMBs at CERN

- Each CE box contains a FEMB assembly
 - 9 of 14 failed FEMBs at CERN due to broken data connectors

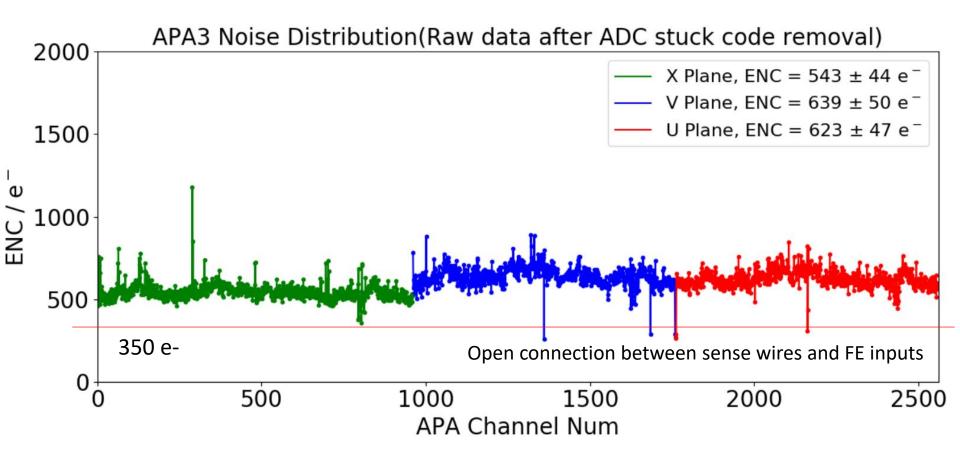
ΑΡΑ	Failure Mode	CE Box IDs Replaced	Testing Stage Identified
	1 dead FE channel at RT	009	QC at BNL
1	1 LV return wire cut during cabling on APA	020	Installation
	3 dead FE channels at RT	024	Installation
2	Data cable connector failed during GN2 cooldown	039	Cold Box
	1 dead channel at RT	069	Installation
3	Data cable connector failed at RT in cold box	018, 049, 075	Cold Box
	1 FE ASIC (16 channels) failed during GN2 cooldown	022	Cold Box
4	1 dead channel at RT	091	Reception
4	Data cable connector failed at RT in cold box	085	Cold Box
5	Data cable connector failed at RT in cold box	106, 122	Cold Box
6	Data cable connector failed at RT in cryostat	112	Cryostat
0	Data cable connector failed	146	Reception

Data Cable Connector Failure

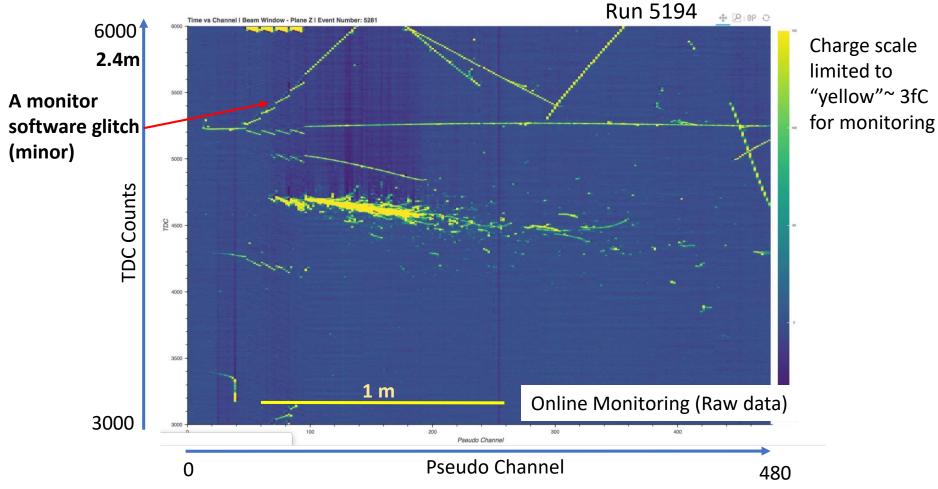

- Issue: Data cable connector on FM detached from PCB board
 - Resulted inoperative FEMB
 - 9 CE boxes were replaced due to connector failure
 - 1 rejected at reception
 - 7 replaced after cold box test
 - 1 replaced after APA installed in cryostat
 - 1 possible failure after cryostat filled
 - FEMB in cryostat was recovered with new firmware using on board oscillator as clock (bypassing the system clock)
- Solution for DUNE
 - Redesign both FM PCB and male connector attached to the cable
 - More information in Jack's talk



ProtoDUNE-SP CE Status in Detector Operation

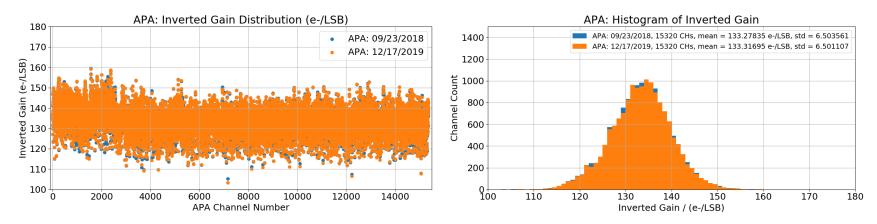

- No FE channel got damaged by bias during CERN cold box integration test
 - No cathode but nominal wire bias voltages under strong LN2 air flow
- With 180kV cathode and nominal bias voltages
 - 99.74% (15320 of 15360) of TPC channels are active
 - Only 4 inactive cold electronics channels
 - 92.83% TPC channels have excellent noise performance
 - Raw data: Collection ENC ~560 e⁻, Induction ENC ~670 e⁻
 - 2 more inactive channels on APA6 were observed Nov.27, 2019

	09/1	3/2018	09/23	11/27/2019	
Item	test#1	test#5	test #18	test #35	DAQ
Drift	off	120kV%	160kV	180kV	180kV
Bias	off	on	on	on	on
FE Inactive	0	2	4	4	6
Channels (good & <800e-)	14397	14297	14179	14259	/

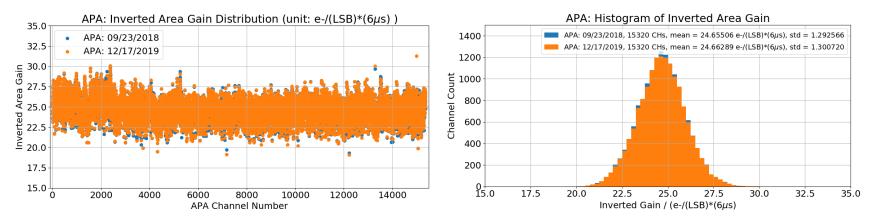


APA3 Noise Distribution in ProtoDUNE-SP Commissioning

Shower Event under 7Gev Beam



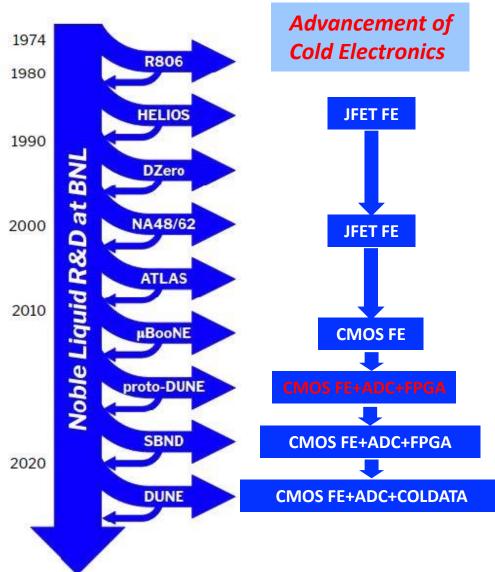
T. Yang's talk in the LBNC Review


- High signal-to-noise ratio (Collection Y: 48, induction U: 18, induction V: 21)
- Very few dead/noisy channels (< 0.1% dead)</p>
- > Most of the identified issues in raw data are minor and can be mitigated in the offline analysis

Stability of CE in ProtoDUNE-SP

• No measurable degradation is observed over 15 months operation

Gain calculated from peaks indicates no degradation (0.03%) in the pulse amplitude

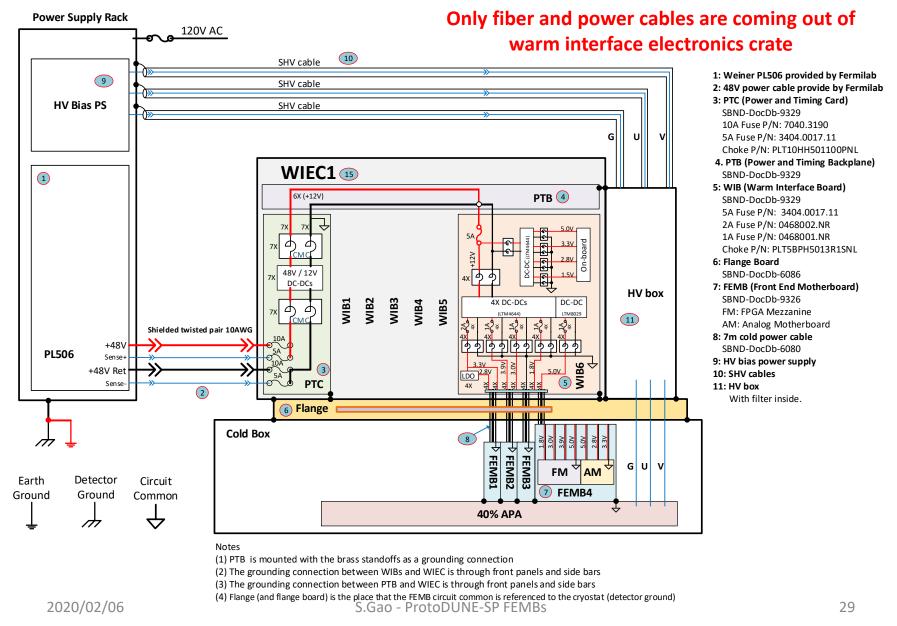

Gain calculated from areas indicates no degradation (0.03%) in the shape of pulse waveform

Summary

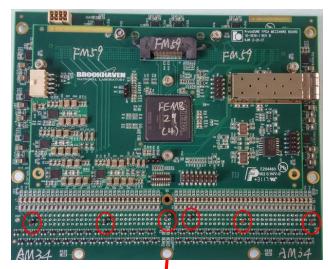
- ProtoDUNE-SP project at the CERN Neutrino Platform will provide validation of LArTPC technology, detector response and long-term stability for DUNE FD optimization
 - Readout electronics developed at BNL for low temperatures (77K-89K) is an enabling technology for noble liquid detectors for neutrino experiments
 - An integral design concept of APA + CE + Feed-through, and Warm Interface Electronics with local diagnostics and strict isolation and grounding rules is crucial for success of LArTPC experiments
 - Satisfactory noise performance
 - No measurable degradation is observed over 15 months operation
- Well-organized ProtoDUNE-SP QC campaign is proved valid and successful
 - 5-level (component, board, assembly, reception, infrastructure) QA/QC procedures assure a high-quality, functional cold electronics system is delivered on a tight schedule.
 - SBND cold electronics adopts similar QC plan and procedures, a good reference for ProtoDUNE-II and DUNE Far Detector

Backups

Long History of Noble Liquid Development



- BNL pioneered LAr based detector technology in 1974^[1]
- Physics/Engineering expertise which has made essential contributions to various programs, e.g. ATLAS, MicroBooNE
- Unique experience in cryogenic electronics and micro-electronics
- The R&D effort makes the experiments possible; the experiments, in turn, feed information back into the R&D process
- Cold electronics development is making continuous advancement, from JFET to CMOS, from analog front-end to mixed signal ADC and FPGA
- A strong cold electronics team is built up as a core BNL competence, in close collaboration with other institutes, to realize various LAr TPC experiments
- [1] W. Willis, V. Radeka, Nucl. Instr. Methods, 120 (1974) 221
- [2] COLDATA is being developed by Fermilab

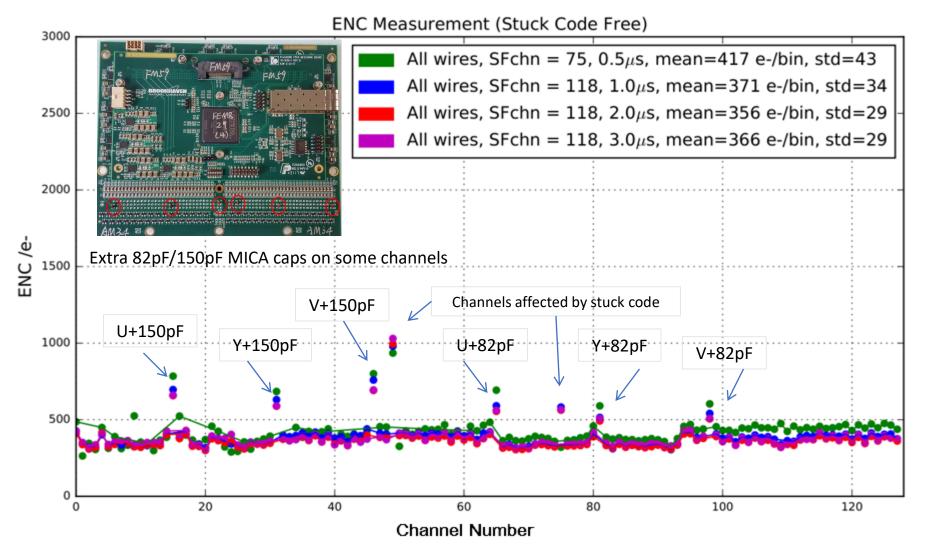

Grounding and Isolation Rules

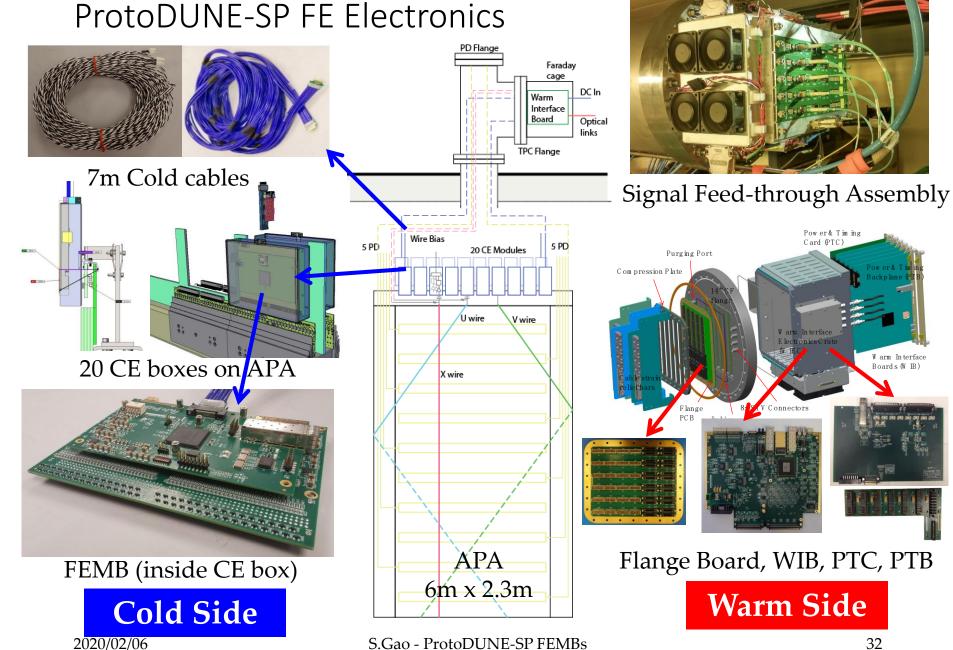
- ProtoDUNE TPC uses extremely sensitive electronics to measure the charge from the TPC wires
 - A grounding scheme has been developed to isolate the detector and local detector electronics racks from all other electrical systems
- Following experience from ATLAS and MicroBooNE experiment
 - APA frame should be connected to the COMMON of all FE ASICs
 - All electrical connections (power and signal) from APA shall lead to a single feed-through.
 - The COMMON of the FE ASIC and of the rest of cold readout shall be connected to the common plane/enclosure of the cold FE module (FEMB)
 - The flange of feed-through should be the only connection of the APA frame to the cryostat
 - The APA frame to the cryostat should be insulated
 - Avoid ground loops

40% APA LV Diagram (Including Grounding Scheme)

More Pictures

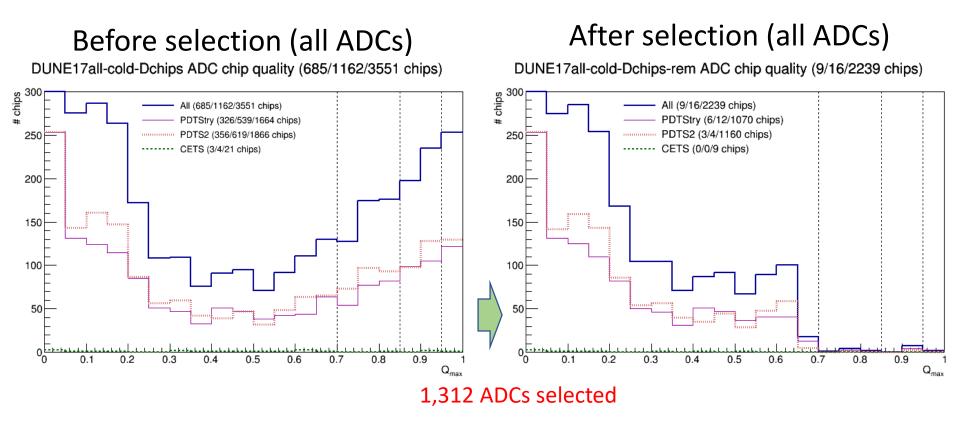
Some channels with extra 82pF/150pF MICA caps




After cold test, 40% APA were still fully submerged in LN2 (~ 400 gallons LN2 was consumed)

APA and FEMBs were fully submerged in LN2

2020/02/06


ENC Measurement at LN2

P1 ADC ranking (by Q)

ADC Q score is the efficiency for all input ranges in all channels multiplied (explored by David Adams) - detailed definition, check David Adams

ADCs selected in 6 lots (one per APA) roughly every month during the production testing ADCs for APAs 2-6 had Q>0.7 (30%), the final selection for APA7 took Q>0.65

Statistics of Total 15360 TPC channels

		09/23/202	18			
Priority (1 is highest)	ltem	test#1	test#5	test #18	test #35	
/	Drift	off	120kV%	160kV	180kV	
/	Bias	off	on	on	on	
1	ADC Sync Error	112	112	0	0	
2	FE Start up	13	40	16	0	
3	FE Inactive	0	2	4	4	
4	FE Calibration Error	0	0	0	0	
5	FE Gain > 180e-/ADC	2	2	2	2	
6	FE Gain < 90e-/ADC	0	0	0	0	
7	Pedestal with unremovable stuck code	48	52	59	45	
8	Broken Connection ENC < 350 e-	41	38	39	34	-
9	ENC > 2000 e-	2	0	1	3	
10	2000 e->= ENC > 1000 e-	295	348	405	386	
11	1000 e->=ENC > 800 e-	446	466	655	627	
12	Channels (good & <800e-)	14397	14297	14179	14259	
/	Active FE channels	15229	15201	15338	15354	9
/	Active TPC channels	15188	15163	15299	15320	9
/	Channels (good & <800e-) / 15360 channels	93.73%	93.08%	92.31%	92.83%	V
/	Active FE channels / 15360 channels	99.15%	98.96%	99.86%	99.96%	(
/	Active TPC channels / 15360 channels	98.88%	98.72%	99.60%	99.74%	

Update CFG paras to fix ADC Sync error

No dead channel existed when LAr filling is done (07/08/2018)

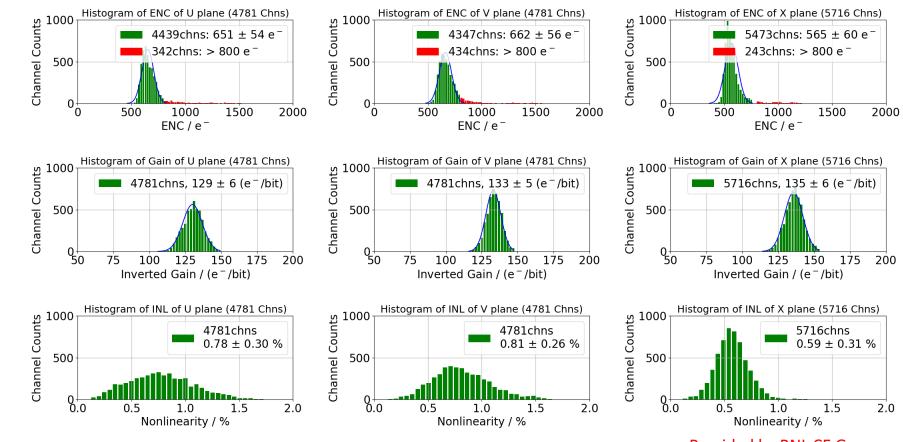
4 more channels identified byno response to real event byDavid Adam

99.74% of TPC channels are active 92.83% of TPC channels are good with excellent noise performance (ENC < 800e⁻)

2020/02/06

Failure Modes Based on FEMB (CE Box) at CERN

	# of CE box							
Failure Mode	Reception	cold box checkout before cool down	Cold box chekcout during cooldown	Cryostat warm checkout (07/08/2018)	cryostat cold checkout(09/13/2018)			
FEMB with one or more dead channels	3 (note.A)	2 (note.B)	0	1 (note.C)	3 (note.D)			
Cabling misoperation (e.g. wire cut)	0	1 (note.E)	0	0	0			
Broken Data Cable Connector	1 (note.F)	6 (note.G)	1 (note.H)	1 (note.l)	1 (note.M)			
Misjudge	0	0	1 (note.J)	0	0			
FE start-up	0	0	1 (note.K)		3 (note.L)			


CE boxes can be replaced and repaired at BNL

CE boxes can't be replaced

Notes:

- A. FEMB#49CH49, FEMB#18CH56, FEMB#69CH?
- B. FEMB#24CH(64,65,109), FEMB#9CHN65
- C. A channel on A115(FEMB#08) was inactive at warm, but came back to alive at cold (possible contaminated)
- D. FEMB#119(B605CH52), FEMB#14(A120CH30), FEMB147(A515CH15, CH53)
- E. FEMB#20: 1 LV return wire cut during cabling on APA
- F. FEMB#146
- G. FEMB#(39, 18, 49, 85, 106, 122)
- H. FEMB#75
- I. FEMB#112, replaced with a new FEMB in cryostat
- J. FEMB#123
- K. FEMB#22, 1 FE ASIC with start-up issue.
- L. 6 FE ASICs on 4 FEMBs suffer start-up issue: FEMB#60_A316(FE#6, FE#8), FEMB#61_B407(FE#1), FEMB#120_A514(FE#2, FE#5), FEMB#108_A519(FE#5). Fixed by changing FE baseline to 900mV
- M. FEMB#56 B302: 100MHz clock link is broken, fixed by new firmware with onboard XO. S.Gao ProtoDUNE-SP FEMBs

Test#35 (09/23/2018) CE Performance Evaluation (**Drift = 180kV, Nominal Bias**)

Provided by BNL CE Group