

Lawrence Berkeley National Laboratory

ColdADC Measurements

Cheng-Ju Lin (on behalf of ColdADC Design Team)

cjslin@lbl.gov

05 February 2020 DUNE PDR: TPC Electronics ASIC/FEMB Review @ CERN

Introduction

- ColdADC ASICs received from foundry in early 2019
- Extensive testing program at Fermilab, BNL and LBNL
- A number issues were identified relatively quickly
- ColdADC is highly configurable with many redundancies to mitigate risks
- Able to configure the chip to operate well
- Initial performance results are good
- Will present the findings/results in this talk. Carl will cover our understanding of the issues and changes planned in the next talk

Testing Terminology/Jargon

For standalone test using pulser for input signal, three input methods are available

When LArASIC is used, only input method #1 and #2 are available

"Frozen SHA/MUX":

- MUX is disabled
- One specific channel is sent directly to pipelined ADC (sampled at 16 MHz)

Cryogenic Systems

Cryogenic Test System (CTS):
Multiple units built by MSU. Available at all 3 labs

Quick thermal cycling time

WORTHINGTON LDSD

Will use for production testing

Cheng-Ju Lin (LBNL)

Open dewar

Cryocooler @ Fermilab: Ability to control the temperature of the ASIC

Test Boards

Fermilab cryocooler setup uses NI FPGA board for readout

BNL Test Setup

LBNL Test Board in CTS

ColdADC Performance Summary

Configuration for System Level Integration Test:

- VDDA2P5=VDDD2P5=2.5 V; VDDD1P2= 2.0 V; VDDIO=2.25 V
- CMOS Reference (VREFP=1.95 V, VREFN=0.45 V, VCMI=0.9 V, VCMO= 1.2 V)
- SDC bypassed

Specification	Value	Result	Note
Operation Temperature	Room Temp. (RT) and 88 K	Success	
Sampling Rate	2 MHz	$2 \mathrm{~MHz}$	
Noise	$200 \ \mu V$ -rms	189 μ V-rms	@ LN ₂ temp
		$(302 \ \mu \text{V-rms})$	(RT)
Differential Non-	± 0.5 LSB (at 12-bit level)	+0.2 to -0.5 LSB	$@LN_2$; typical values
linearity (DNL)			
Integral Non-	± 1 LSB (at 12-bit level)	+1.2 to -1.1 LSB	$@LN_2$, typical values
Linearity (INL)			
Effective-Number-	11.0 bits	<mean $>=10.6$ bits	@ LN ₂
of-Bits (ENOB)		rms=0.3 bits	
No Missing Codes	N/A	Success	$@LN_2 and RT$
Across Dynamic Range			
Crosstalk	No Specification	< 0.5%	@LN ₂
		(< 1%)	(RT)

Functional Tests

Core functions performed as expected:

- I2C, UART communications
- Chip reset
- LVDS I/O
- CLOCK generation
- Data formatter
- Etc.

Auto Calibration for Pipelined stages:

- Did not work. Issue understood
- Calibration is done offline and then weights are loaded back to the ADC registers
- Inconvenient but offline calibration is functionally identical to autocal

ADC Noise

ColdADC noise performance is excellent

Measured noise:

- 302 µV-rms (6.7 LSB 16-bit) at room temp
- 189 μ V-rms (4.2 LSB 16-bit) at LN₂ temp

Measured with SDC bypassed. SDC noise is negligible

LArASIC+ColdADC Noise

- Noise for the full chain (LArASIC+ColdADC) also measured
- With 150 pF capacitor at LArASIC input to simulate TPC sense wire capacitance

Cheng-Ju Lin (LBNL)

LArASIC+ColdADC Noise

Noise as function of input capacitance at LN₂

Showing good linear relationship between noise and capacitance

Note: due to test setup, the actual capacitance may be slightly lower than the points shown

14-bit ColdADC

Default plan is to truncate 16-bit down to 12-bit Given the superb noise performance, will consider outputting 14-bit

With Input Floating

With 150 pF Mica Capacitors at Input

ColdADC Static Linearity

- Apply sine wave to input channel
- Extract DNL and INL from code density histograms

ColdADC Dynamic Linearity

FFT on coherently sampled sine wave LN_2 Measurement

Measured ENOB ASIC (16 channels):

$\mathbf{Channel}\#$	Ch0	Ch1	Ch2	Ch3	Ch4	Ch5	Ch6	Ch7
ENOB	10.5	10.8	10.2	10.4	10.7	9.8	10.6	10.4
${f Channel}\#$	Ch8	Ch9	Ch10	Ch11	Ch12	Ch13	Ch14	Ch15
ENOB	10.2	10.5	10.6	10.5	10.7	10.3	9.8	9.7

Cheng-Ju Lin (LBNL)

LArASIC Calibration Circuit

LArASIC has a 6-bit DAC to inject charge at input for calibration

Observed non-linearity (from linear fit) of 0.19% is dominated by the 6-bit DAC. Non-linearity from LArASIC+ColdADC is expected to be well less than 0.1%

Channel Crosstalk

- Study channel crosstalk for LArASIC+ColdADC together
- Large input pulse on one channel and look at the response on the remaining 15 channels

Room Temperature

CHN Amplitude /LSB		Crosstalk /%	
0	58819	100	
1	532	0.905	
2	184	0.314	
3	142	0.242	
4	136	0.231	
5	131	0.223	
6	221	0.375	
7	117	0.199	
8	120	0.203	
9	120	0.204	
10	114	0.194	
11	114	0.194	
12	99	0.168	
13	96	0.163	
14	88	88 0.149	
15	88	0.149	

Channel Crosstalk

Results:

- Largest crosstalk on the adjacent channel within the ADC core
- About 1% at warm;
 < 0.5% at LN₂ temperature
- Studies suggest the source of the crosstalk is in SHA/MUX

ColdADC Power Consumption

- Running ColdADC at higher than nominal voltages to address several issues (e.g. IR drop, missing level-shifter, etc.)
- Expect lower power consumption in the next revision of the ColdADC. Also similar performance between BGR and CMOS
- At our current nominal configuration, drawing ~425mW per chip (~26 mW/channel)

Temperature	RT	RT	RT	LN_2	LN_2	LN_2
Reference	BGR	BGR	CMOS	BGR	BGR	CMOS
SDC	enable	bypassed	bypassed	enable	bypassed	bypassed
VDDA2P5/VDDD2P5/V	2.5	2.5	2.5	2.5	2.5	2.5
VDD1P2 / V	2.1	2.1	2.1	2.1	2.1	2.1
$\mathbf{VDDIO} / \mathbf{V}$	2.25	2.25	2.25	2.25	2.25	2.25
Total Power / mW	515	418	418	563	513	425
Power per Channel / mW	32.2	26.1	26.1	35.2	32.1	26.6

- QC procedure developed and tested at BNL
- U. of Florida is setting up the production site to perform QC on the remaining ~90 packaged ColdADC chips

- BNL performed QC on 33 packaged ColdADC
- One chip (#00096) drew high current. Has a "short" between VDDA2P5 and VSSA2P5. Sent out for post-mortem
- Also previously tested other chips. Out of 53 (51 packaged and 2 bare dies), only one failed. Yield is very good
- Showing results from the 32 QC'ed chips

Power Consumption

Cheng-Ju Lin (LBNL)

Linearity measurements are done with all 16 channels pulsed simultaneously

Due to crosstalk, slightly worse linearity values than single channel measurements

Linearity (Sampling Rate = 2 MHz)

Also characterize performance with slower clock speed to estimate the performance with minimal crosstalk and kickback

LN_2 RT Histogram of Worst DNL (500 kS/s) Histogram of Worst INL (500 kS/s) Histogram of Worst INL (500 kS/s) Histogram of Worst DNL (500 kS/s) Total CHNs = 512 140 Total CHNs = 512 Total CHNs = 512 175 Total CHNs = 512 100 (b)(a (b)(a Mean = 0.31Mean = 0.92120 Mean = 0.13Mean = 0.65RMS = 0.06RMS = 0.15120 RMS = 0.01RMS = 0.05150 Counts 100 001 Counts 80 80 Counts 125 80 Channel 60 a 80 100 Channel Chanr 60 60 75 40 ADC ADC ADC 40 40 50 20 20 20 25 0 0 0 0 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.6 0.8 1.0 1.4 1.2 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.55 0.60 0.65 0.70 0.75 Worst DNL / LSB Worst INL / LSB Worst DNL / LSB Worst INL / LSB Histogram of ENOB (500 kS/s) Histogram of Noise at 900mV (500 kS/s) Histogram of ENOB (500 kS/s) Histogram of Noise at 900mV (500 kS/s) 140 250 Total CHNs = 512 Total CHNs = 512 250 (c) (d) Total CHNs = 512 Total CHNs = 512 Mean = 10.96 Mean = 0.46120 Mean = 10.84Mean = 0.53100 RMS = 0.09RMS = 0.05RMS = 0.03RMS = 0.021 Counts 200 Counts Counts Counts 120 (d) 100 80 (c) 80 150 Channel Channel Channel 100 60 60 100 ADC ADC 40 S 40 50 50 20 20 0 0 10.6 10.7 10.8 10.9 11.0 11.1 0.35 0.40 0.45 0.50 0.55 0.60 10.5 10.6 10.7 10.8 10.9 0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.67 ENOB / bit Noise at 900mV / LSB ENOB / bit Noise at 900mV / LSB

Linearity (Sampling Rate = 0.5 MHz)

Cheng-Ju Lin (LBNL)

Counts

Char

DO

Cha

ADC

Summary

- First prototype of ColdADC is performing well. Essentially meeting DUNE specs
- Noise performance is excellent. Reducing quantization noise by going to 14-bit can further improve the overall system noise
- Will consider outputting 14-bit. COLDATA provides for 14-bit as well as 12-bit data (as does the Warm Interface Board output format)
- A number of issues were identified. With the redundancies and programmability of the ColdADC, able to configure the chip for good performance
- Power consumption is acceptable even at elevated operating voltages. Power consumption will go down in the next version of ColdADC
- Production QC Testing procedure has been exercised. Yield based on ~50 chips is high (>98%). Production Testing Site will QC the remaining packaged chips soon

Input Buffer

LArASIC gain = 14mV/fC; 2 µs shaping time

SDC Linearity

- SDC buffer may improve marginally the ADC DNL performance in LN₂. However, it introduces large variation in INL
- Given that LArASIC output is capable of driving signal directly to ColdADC SHA, SDC is bypassed when characterizing the ADC performance

