A Brief History of Cold Front-End ASIC Development for LArTPC

H. CHEN ON BEHALF OF BNL COLD ELECTRONICS TEAM BROOKHAVEN NATIONAL LABORATORY FEBRUARY 6TH, 2020

Outline

- Introduction
- Brief History of Cold FE ASIC Development
- Performance of FE ASIC in MicroBooNE and ProtoDUNE
- Summary

Introduction – Front-End ASIC

- 16 channels, programmable
- charge amplifier, high-order filter
- adjustable gain: 4.7, 7.8, 14, 25 mV/fC (charge 55, 100, 180, 300 fC)
- adjustable filter time constant (peaking time 0.5, 1, 2, 3 μ s)
- selectable collection / non-collection mode ~ 16,000 MOSFETs (baseline 200, 900 mV)
- selectable dc/ac coupling (100 μ s)
- built in pulse generator with 6-bit DAC
- built in analog monitoring output

- programmable bias current: 100pA, 500pA, 1nA, 5nA
- rail-to-rail analog signal processing
- band-gap referenced biasing
- temperature sensor (~ 3mV/°C)
- 144 configuration registers with SPI interface
- ~ 5.5 mW/channel (input MOSFET 3.9 mW)
- - designed for 77K-300K operation
 - designed for long lifetime
- tech. CMOS 180 nm, 1.8 V, 6M, MIM, SBRES

mm

A Brief History of Cold FE ASIC Development

Version	Submission	Results
V1	02/2010	Functionality in LN2 achieved
V2	12/2010	Optimization of input MOSFET and resistance of input line
V3	07/2011	AC coupling and improvement of DC PSR
V4	03/2012	Improvement of uniformity of calibration response in LN2
V4*	06/2012	Improvement of cold yield, instrumented <i>MicroBooNE (8,256 channels)</i>
P1	02/2016	Internal pulse generator, bias current options, BGR start-up
P2	08/2016	Pole-zero cancellation, external resistor and analog monitoring, instrumented <i>ProtoDUNE-</i> <i>SP</i> (15,360 channels)
P3	03/2018	Non-uniform baseline, default gain configuration

MicroBooNE Experiment

• 170 ton LAr TPC in the Fermilab Booster Neutrino Beamline

• MicroBooNE is also an important first step in the SBN program

- physics goals:
 - address MiniBooNE
 low energy excess
 - make 1st low energy neutrino cross section measurements on Ar
 - <u>technical advances</u>:
 - argon fill without evacuation (1st demonstrated in LAPD)
 - cold front-end electronics
 - long drift (2.5m)
 - near surface operation
 - automated reconstruction

Start of Operations \rightarrow First Neutrinos: October 15, 2015

Excellent Stability and Performance of MicroBooNE TPC

- MicroBooNE is the first experiment instrumented with cold CMOS ASICs, total 8,256 channels
 - S/N is improved by more than factor of 3 compared to previous large scale LArTPC experiment (e.g. ICARUS)
- Electronic calibration
 - Cold electronics gain stable over two year period, *variation* ~0.2%
- Excellent noise performance
 - ENC after noise filtering is < 400 e⁻ for 85% of channels, in agreement with bench tests of FE ASIC

ProtoDUNE-SP

- Single-phase TPC prototype
 - Sit in H4 beam line in EHN1 @ CERN
 - Consisting of 6 full-size APA's plus CPA's → 2 x 3.6m drift regions
 - Total 15,360 TPC channels
 - Photon detectors with different fabrication methods
 - Successful operation in 2018 & 2019
- A key test platform for DUNE Far Detector:
 - Components
 - Construction methods
 - Installation procedures
 - Commissioning
 - Detector response to particles

An Example of EM Shower in ProtoDUNE

From Online Monitoring (Raw Data)

ProtoDUNE ENC Performance

- With drift 180kV and nominal bias voltages
 - 99.74% (15,320 of 15,360) of TPC channels are active regardless of noise performance
 - Only 6 inactive FE channels, others can be attributed to TPC etc.
- Noise performance with drift and bias on
 - ENC of collection (X) plane (5,473 of 5,760 channels): 565 ± 60 e⁻
 - ENC of induction (V) plane (4,347 of 4,800 channels): 662 ± 56 e⁻
 - ENC of induction (U) plane (4,439 of 4,800 channels): 651 ± 54 e⁻

Excellent Stability and Performance of ProtoDUNE TPC

	Peak signal-to-noise ratio				
Plane	Raw Data		After Noise Filtering		
	MPV	Average	MPV	Average	
Collection	30.9	38.3	40.3	48.7	
U	12.1	15.6	15.1	18.2	
V	14.9	18.7	18.6	21.2	

- Gain is stable over 15 months of operation
 - Variation < 0.05%</p>
- Excellent Signal to Noise Ratio of the full system
 - Signal: detected Charge (*hit Peak-amplitude*) in individual channel waveform (from U,V,C wire-plane) from mip tracks corrected by angle of incidence
 - Noise: σ of baseline fluctuation in corresponding channel waveform

Summary

- R&D of CMOS cold electronics started in 2008
 - First analog front-end ASIC was designed in 2010
- FE ASICs have been used to instrument MicroBooNE (V4*) and ProtoDUNE (P2) LArTPCs *successfully*
- Cold FE ASIC is continuing development towards a robust design adaptable to future design rule and process technology changes
 - P3 FE ASIC has been fabricated and evaluated in the lab
 - Development of P4 FE ASIC is ongoing, with plan to address the ledge effect (see Shanshan's ASIC talk) and add SE-DIFF converter

Backup Slides

ProtoDUNE-SP Run 5809 Event 10747 @2018-11-07 11:58:22 UTC

ProtoDUNE-SP Run 5770 Event 59001 @2018-11-02 20:51:09 UTC

ProtoDUNE-SP Run 5145 Event 27948 @2018-10-1

ProtoDUNE-SP Run 5770 Event 50648 @2018-11-02 20:32:06 UTC

ProtoDUNE-SP Run 5772 Event 15132 @2018-11-03 10:09:15 UTC

