

LArASIC - FE ASIC for DUNE LAr TPC

Dr. Venkata Narasimha Manyam

Instrumentation Division, Brookhaven National Laboratory

February 6th, 2020, CERN

Outline

- LArASIC Introduction
- Changes Between Recent LArASIC Versions
- LArASIC P3 Simulations and Identified Issues
- LArASIC P4 Development
- LArASIC P4 Simulations
- Summary and Future Work

LArASIC – Simplified block diagram & functionality

- 16 channels
- Two-stage charge amplifier, high-order filter (5th)
 Adjustable Reset Quiescent Current (RQI/leakage)
 settings (100 pA, 500 pA, 1nA, 5 nA)
- Adjustable gain: 4.7, 7.8, 14, 25 mV/fC (Max. charge 55, 100, 180, 300 fC)
- Adjustable filter time constant (peaking time 0.5, 1, 2, 3 μs)
- Selectable collection/non-collection mode (baseline 200, 900 mV)
- Selectable DC/AC coupling (100µs HPF time-const.)
- Rail-to-rail analog signal processing with single-ended buffer
- Bandgap referenced (BGR) biasing circuits
- Temperature sensor (~ 3mV/°C)
- Integrated 6-bit pulse generator
- 144 configuration registers, SPI interface
- 5.5 mW/channel (input MOSFET 3.9 mW)
- ~ 16,000 MOSFETs
- Designed for room (300K) and cryogenic (77K) operation
- Technology CMOS 0.18 μm , 1.8 V, 6M, MIM, SBRES

Previous FE ASIC layout

Successful deployment with excellent performance at MicroBooNE and ProtoDUNE

LArASIC Channel – Simplified block diagram

Changes between recent versions of the FE ASIC

P1 (V6)

- 6-bit pulse generator added
- SLKH, i.e., high (10x) Reset-loop Quiescent Current (RQI) added to compensate for saturation effects (aka "Chirping")
- BGR fix didn't work → 7% chips don't start in cold
- RQI subtraction added in CA2 to correct for BL DC for 5nA RQI → CA2 Adaptive Continuous Reset (ACR) non-functional → needs 1GOhm at input
- Transistor sizing similar to V5
- Imperfect PZ cancellation → return to baseline issues

P2 (V7)

- PA-SH changed to correct return to baseline issue
- Removed RQI subtraction in CA2
- Changed W and L in the ACR of CA1 and CA2
 - {W,L} in ACR CA2, P2 = {8*W, 8*L} ACR CA2, P1
- Inter-channel BL variation (geometric dependence) for 200 mV BL option observed due to packaging stress
- Ledge observed only in cold during shower event (after P3 tape-out)
- BGR issue of 7% chips in cold still present

P3 (V8)

- Geometric dependence for 200 mV baseline mitigated by replacing current biasing with voltage in shaper 1st and 2nd stages → changes CA2 bias vol.
- Ledge behavior still present in cold
- BGR issue of 7% chips in cold still present

Outline of Identified problems and simulation methodology

Only in Cold

operation

- Identified problems
 - Bandgap Voltage Reference (BGR) fails in 7% of the chips
 - Ledge effect during shower event
- Simulation procedure
 - Model files from foundry used
 - "cmno18_asp_v1d2.scs" in BSIM4 (V4.5)
 - Extrapolated for LN and LAr temperatures, outside of guaranteed range
 - Mismatch models only for MOSFETs
 - Perform different analysis needed such as DC, AC, stability (STB), noise, transient (with or/and without noise) in nominal, process corners (SS, FF, SF and FS) and Monte Carlo with process variation (PV) and mismatch (MM)
 - Schematic level simulations have been shown later

BGR Problem in P3

Bias module based on Bandgap Voltage Reference (BGR)

• Still 7% of the P3 chips doesn't start only in cold \rightarrow They are currently screened-off

P3 BGR simulations

Start-up sim.s of P3 BGR

1µs supply ramping; 50 run MC (PV+MM) at LAr and RT

Ledge Effect in P3

Ledge effect in LArASIC P3

 Only during cold operation and mostly with shower charge (e.g. > 100 fC for 14 mV/fC setting) for 200 mV baseline setting, LArASIC P2 and P3 outputs of some of the channels saturate and produce ledge characteristic after a delay

Image from: Study of the "Ledge" effect in protoDUNE readout, Hucheng Chen, et al.

Simulation of shower event at LN : 500 fC input for 50 μs

TT_new_m196 \rightarrow cmno18_asp_v1d2.scs is BSIM4 (V4.5) ~38k lines

Origin of ledge effect

- Adaptive Continuous Reset(ACR) network in the ca2n resized from V5(V4*)/V6(P1) moving to V7(P2)/V8(P3) to improve pole-zero cancellation (baseline restoration)
- Width and Length of the transistors in ACR increased by 8 times in P3 compared to V5, increased gate cap. by ~64 times, making the loop unstable, causing ledge

Ledge effect origin fully understood

Both W and L increased by 8 times

Other Performance Metrics of P3

Simulations of P3 channel baseline DC shift for different settings

* Setting: BL = 200/900 mV, Gain = 14 mV/fC, Cdet = 150 pF

RQI (leakage) setting of 500 pA mostly used and 5 nA is not needed Baseline shift reduces signal swings

P3 ASIC baseline DC variation in LN – Measurement of 171 chips, 2736 channels

Setting: BL = 200/900 mV, Gain = 14 mV/fC, Tp = 2 us, DC, Buffer on, 500pA. 1.6% had unresponsive channels and 4.79% did not respond after a power cycle in LN

P3 FE ASIC baseline DC variation in LN – MC simulations

100 run MC simulations (PV+MM) at schematic level

Setting: BL = 200/900 mV, Gain = 14 mV/fC, Tp = 2 us, DC coupling, Buffer not used, 500pA, Cdet = 150 pF Bandgap reference voltage problem (1.78 V instead of 1.2 V) in 6% (200 mV BL) and 4% (900 mV BL) simulation runs

Close to measurements

Simulations of P3 channel ENC

Setting: BL = 200/900 mV, Gain = 14 mV/fC, Cdet = 150 pF

P3 Simulation results – Linearity

Setting: BL = 200 mV, Gain = 14 mV/fC, Tp = 2 us, 500pA, Cdet = 150 pF

Single-ended output buffer linearity

INL = \pm 14 μ % (Typical)

LArASIC P4 Development

- Towards a robust design

Required Improvements for New FE ASIC (P4)

- Required
 - Address bandgap voltage reference failures happening in ~7% of the chips at cold
 - Ledge effect mitigation during shower events up to 500 fC input charge
 - Implement single ended to differential buffer matching with ADC spec.s
- Additional
 - Decreasing baseline shift for different settings

BGR Problem Mitigation in P4

Mitigation of Bandgap Reference problem with schematic modifications for P4

In all the previous versions of BGR, bias of BGR was derived from BGR \rightarrow Problem We decoupled it

50 run MC (PV+MM) sim.s with Temp. sweep -196 to 125°C of proposed BGR

Start-up sim.s of proposed BGR with 1µs supply ramping; 10 run MC (PV+MM) at LAr and RT

Ledge Effect Mitigation in P4

Proposed mitigation of Ledge Effect

- After multiple simulations the optimal resizing factor was chosen to be 3x instead of 8x
 - Capacitance increases by factor 9, not 64
 - Mitigates ledge effect
 - Pole-zero cancellation similar to P3

Simulations of shower event at LN for P4 : 500 fC input for 50 μ s

Monte-Carlo simulation of shower event at LN for P4 : 500 fC input for 50 μs

10 run with process and mismatch at schematic level

Monte-Carlo simulation of shower event at LN for P4 : 1 pC input for 50 μs

100 run with process and mismatch at schematic level

Baseline DC Shift Improvement in P4

Proposed mitigation of baseline shift for different settings

RQI subtraction improves baseline shift
A factor of 16x RQI is optimal

• Previously in P1, all the RQI was completely subtracted (20x) in P1, which incapacitates adaptive continuous reset loop (leakage). Hence necessitating 1 G Ω resistor at input to make the loop work.

Baseline shift for different settings with Proposed modifications

Setting: BL = 200/900 mV, Gain = 14 mV/fC, Cdet = 150 pF

Baseline shift improved \rightarrow Maximizes signal swings

Other Performance Metrics of P4

Proposed P4 FE ASIC Baseline DC Variation in LN – MC simulations

100 run MC simulations (PV+MM) at schematic level Setting: BL = 200/900 mV, Gain = 14 mV/fC, Tp = 2 us, DC, Buffer not used, 500pA

Slightly better than P3

Simulated ENC of the proposed P4 channel

Setting: BL = 200/900 mV, Gain = 14 mV/fC, Cdet = 150 pF

ENC almost similar to P3

Proposed P4 simulation results – Linearity

Setting: BL = 200 mV, Gain = 14 mV/fC, Tp = 2 us, 500pA, Cdet = 150 pF

Single-ended to Differential Converter (SDC) buffer

- Two options
 - 1. Porting the SDC design present in cold ADC (65 nm) \rightarrow Vdd = 2.25 V
 - 2. Based on single-ended buffer core
 - Already present in 180 nm, highly linear and silicon-proven rail-to-rail operation
 - Need to modify for differential output and qualify with simulations
 - Addition of Common-Mode Feedback Circuit (CMFB)

LArASIC P4 estimated size

- Differential buffers will reuse singleended buffer output and supply pads
- Need 16 more output, 2 Vddo and 2 Vsso pads.
 - Pad count 100 (from 80)
- Estimated layout size = 7 mm x 6.2 mm (from 6.0 mm x 5.7 mm)

Summary and Future Work

- Discussed existing P3 LArASIC
- Simulations performed with foundry models
 - Unfortunately cold models don't exist
- Proposed P4 LArASIC with schematic modifications to mitigate
 - BGR problem Done
 - Baseline DC shift variability Done
 - Ledge effect Done
- To start work on layout and post-layout verifications By end of March
- Differential buffer By end of April
- All layout Modifications, extracted simulations and tapeout End of June

Backup Slides

P3 Simulation results – Linearity testing in time domain

Setting: BL = 200 mV, Gain = 14 mV/fC, Tp = 2 us, 500pA, Cdet = 150 pF

