Attenuation Analysis Update

Bryan Ramson November 13, 2019 ProtoDUNE DRA

Introduction & Method Refresh

- Can temporally coordinate all three ProtoDUNE-SP subsystems using the CTB triggered by the CRT on cosmic muons.
- An upstream and downstream muon pixel pair is necessary for the trigger to fire (time difference of 60 ns).
- Comparison of reconstructed track position and orientation to CRT pixel centers confirms trigger and selects track.
- Photons are collected over the entire event and integrated over the entire single track.

Dataset & Cuts

- This is latest TPC/Pandora and SSP processed data!
- Slight geometry change in PDS photon detectors
- Used the runs from the chart, ~1.13 million events

RUN	DATE	SIZE (FILES)
5785-5786	11/5/18	2,202
6120	12/10/18	1,530
6191	12/11/18	1,493
6696,6698,6700	2/7/2019	2,373
6776	2/12/2019	476
6812	2/14/2019	1,413
6834-6838	2/19/2019	4,251
6856	2/20/2019	2,049
6872-6874	2/21/2019	2,536

Track Characteristics

Downstream

Upstream

Attenuation Estimates?

Chi^2/NDF ~ 184/149 Chi^2/NDF ~ 979/374 Chi^2/NDF ~ 602/149 Chi^2/NDF ~ 3,333/374

 Exponential no longer fits! Relationship goes like r^-2 No longer clear what value maps to attenuation-like measurement!

Comparison to Simulation

mg1

 Very good agreement when fit from [25cm, 175cm], fit fails above there, why?

Comparison to Simulation

 Very good agreement when fit from [25cm, 175cm], fit fails above there, why?

Comparison to Simulation

In the simulation, Rayleigh scattering only becomes apparent at distances greater than 2 meters, maxes out at ~5% effect at 3 meters!

Comparison with Simulation

 Can we resolve this 5 percent difference with cleaned up far distance tracks?

FCN=7	75.111 FROM	MIGRAD STATU	S=CONVERGED	70 CALLS	71 TOTAL	
		EDM=3.31291	e-09 STRATE	GY= 1 ERROR	MATRIX UNCERTAINTY	2.0 per cent
EXT	PARAMETER			STEP	FIRST	
NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE	
1	Constant	6.86463e+02	5.93682e+00	1.75892e-02	-3.20289e-06	
2	Mean	1.00259e+00	1.71361e-03	-6.34522e-07	-6.25522e-03	
з	Sigma	1.88543e-01	2.48730e-03	-1.36236e-05	1.76722e-02	

 Data and simulation agree (after normalization and with tails) but event-by-event difference is almost 19%!

- New geometry, reconstruction, and fit strategy significantly improves agreement between data and simulation!
- Attenuation measurement is significantly more difficult given increase in precision and change in fit strategy.
- Resolving power of data is currently ~4 times less than the physical difference in light due to scattering.
- Why? Possibly due to angle on cosmic muons and imperfections in PDS geometry. Eager to get to improved data and simulations!

