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Outline

s it a BEC?
How do we calculate its evolution?

What other cosmological purposes might the axion
serve?

Astrophysics as next gen high energy physics



Axion, ALP, Fuzzy DM, WISP

* (Relic) QCD axions: made in the early (z >> 1100) universe
during the Peccei-Quinn symmetry breaking; thermal: made in
stars?

* Axion-like particles (ALPs): particles with shift symmetries like
axion but maybe not solving QCD problems; motivated by string
theory! (Maybe don'’t solve DM either.)

* Ultralight axions (ULAs): ALPs that are down to 10A-33 €V,
different phenomenology from QCD axion @ 10/-5 eV

* Weakly interacting slim particles (WISPs): light bosons,
sometimes complex rather than real fields, not always scalars

- axions and ALPs are interesting even if not dark matter



Is it a BEC?

* For cosmological purposes is it a classical or
quantum field?

 Mean field approximation is a guantum calculation
that allows treatment as a classical field

Kirkpatrick, Mirasola & CPW, arXiv:2007.07438



Fermions vs. Bosons
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Thermal Fermions: T>T,
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Thermal Bosons: T>T, BEC+Thermal Bosons: TsT, pure BEC: T<<T,
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Wi IR, WEMR.

Thermal Rb-87: T>T, BEC+Thermal Rb-87: T<T, Rb-87 BEC: T<<T,




Equation of Evolution

time
/ evolution
o 8 1 9 A o 3 4 w(x/)‘2
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Self-interaction,
with coupling Gravitational
Kinetic constant A interactions

term



BECs in Space

Sikivie & Yang (2009) propose that QCD axion
dark matter must form Bose-Einstein
condensates during radiation era, m=107-5 eV

Motivation: N ~10°t & Tggc ~ 500eV x (

Y=

fa )
1012GeV

N =

=C from gravitational thermalization, not ¢*

(self) interactions

oy

—C has correlation length that is Hubble scale

arXiv:0901.1106
arXiv:1111.1157



Does ALP Dark Matter form
Bose-Einstein Condensates?

Yes!

QCD: in small, locally-correlated
solitons — bose stars/axsteroids.

ULA: halos with solitons at their core

Sign of the interaction determines
coherence length/soliton size.

CPW, Guth & Hertzberg, arXiv:1412.5930



A schematic picture
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Fuzzy Dark Matter

1406.6586

Schive et al arXiv



The Problem of Axion Fields

* For cosmological purposes is it a classical or guantum
field”?

 Mean field approximation is a quantum calculation that
allows treatment as a classical field

 But how do we account for interactions?
* Levkov et al. (2018) argue a axions evolving under their
self-gravity (without selt-interactions) not a standard

Boltzmann collision process

e |gnore selt-interactions in the analysis

Kirkpatrick, Mirasola & CPW, arXiv:2007.07438



Don’t use Boltzmann!
Get your times sorted!

Kirkpatrick, Mirasola, and Prescod-Weinstein (2020): high
occupancy number implies axions cannot be localized to
a definite position and momentum in phase space,
even during short-range self-interactions

Use the four-point correlation function, not Boltzmann

Time scales involving selt-interactions different from
gravity-only

Sikivie was right: you cannot get thermalization into a
coherent momentum state during lifetime of universe
without gravity

Kirkpatrick, Mirasola & CPW, arXiv:2007.07438



But self-interactions can
still have an impact

o Kirkpatrick, Mirasola, and CPW find that selt-
interactions are subdominant in setting time scale
for initial condensation

* Glennon and CPW find that selt-interactions are
significant for the dynamical evolution of the system

e [et's gain some intuition for why this might be the
case:

Kirkpatrick, Mirasola & CPW, arXiv:2007.07438



Lab BEC in Attractive
Interactions

e Lithium-7 has 3 protons and
3 electrons —> boson

 Negative scattering length _3 .
—> attractive interaction
* Theory said it should not _ ‘ "
form a stable BEC 4 )
S N
. Butit did! For ~ 1000 atoms | & |
or less. (a) (b)

Hulet Group, Rice University

- Lots of intriguing
questions here.
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(c) Repulsive self-interactions
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Glennon and CPW. arXiv:2011.09510




The Incredible Flexible Axion
(Like Particle)

e Strong CP problem?
* Dark matter?

- Solving the electroweak hierarchy
problem?



Electroweak Hierarchy Problem

K Scale/
N Planck scale

—|lectrowea
smaller tha

Why is the Higgs mass so light”?
Fine tuning problem
Solvable with Anthropics

And now the relaxion (Graham et al.)

iggs Mass is ~ 10° times

Energy Length
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‘Relaxion: |
Slow rolling during inflation

V(9)

(=M* + go)|h|* + (gM*) + g"¢" +--+)
+

A% cos(¢/[)

i

my = g¢ — M?

Axion tunnels through barriers
until it naturally lands at right Higgs scale

Chanda Prescod-Weinstein, Quark Assembly



Constraints?

H << Agcp SO classical evolution dominates
H > j\‘[ﬁ to prevent back reaction onto inflaton

D )
inflation must be long-lasting ~ 10°° e-folds

the coupling g must be extremely small



SOLVED? PARTICLE PHYSICS PROBLEMS

e How do we solve the strong CP problem?
e What is the dark matter?

e How do we solve the hierarchy problem?
e What it we solved all three at once?

e Original relaxion mechanism can't.

nsg*0
3272

F,F"”
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CPW & Nelson arXiv:1708.00010




‘Relaxion: |
Slow rolling during inflation

V(9)

Mg + (oMo + gt )y
+ AMM.

A* cos(o/ f) KO-Q ¢2 /\/WVWWVM

Axion tunnels through barriers

2 __ _Af2
until it naturally lands at right Higgs scale my =g9¢— M

Chanda Prescod-Weinstein, Quark Dissemblement



A Thermal Universe

e SO far, studied in zero-temperature regime

« BUT axion mass is temperature-dependent

High temperatures

o) = 21079 () (287) () o

“Low” temperature
1 (mymy)
fa (mu a1 mgq

qu,:

| T

CPW & Nelson arXiv:1708.00010



Account for Temperature-Dependence

—gM?¢ + (M? — g¢)|h?| — (F(h)/r)(m, f2) cos(¢/ fa)

RN

Xv.evg  r=m(T=0)/m(T)
Temperature dependence means:

QCD contribution during inflation << after inflation

Relaxion solves three problems in our patch if

r > 10t

CPW & Nelson arXiv:1708.00010



The Right Value/Patch

* |f relaxion is no longer classical, then backreaction
oroduces several causally disconnected patches

* How do we know we are In the right patch, with the
right relaxion value”

 We use the Fokker-Planck equation to show that the
typical patch will have the right values

o°P 0 (H3 OP V’P)

ot 06 \8r20¢  3H

CPW & Nelson arXiv:1708.00010



Ultralight Axions
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arxXiv:1904.09003




s HEA the future of HEP?
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We're just beginning!
But, this is the end of the talk.

* AXions are worth your attention for many

reasons!

e The phenomenology of the axion is an
exciting for astrophysics and early universe

cosmology

* Ongoing wor

K: understanding galaxy-halo

connection Ir

e [hank you!

context of axion physics



