MAKING A UNIVERSE WITH AXIONS

CHANDA PRESCOD-WEINSTEIN UNIVERSITY OF NEW HAMPSHIRE

Outline

- Is it a BEC?
- How do we calculate its evolution?
- What other cosmological purposes might the axion serve?
- Astrophysics as next gen high energy physics

Axion, ALP, Fuzzy DM, WISP

- (Relic) QCD axions: made in the early (z >> 1100) universe during the Peccei-Quinn symmetry breaking; thermal: made in stars?
- Axion-like particles (ALPs): particles with shift symmetries like axion but maybe not solving QCD problems; motivated by string theory! (Maybe don't solve DM either.)
- Ultralight axions (ULAs): ALPs that are down to 10^-33 eV, different phenomenology from QCD axion @ 10^-5 eV
- Weakly interacting slim particles (WISPs): light bosons, sometimes complex rather than real fields, not always scalars
- axions and ALPs are interesting even if not dark matter

Is it a BEC?

- For cosmological purposes is it a classical or quantum field?
- Mean field approximation is a quantum calculation that allows treatment as a classical field

Fermions vs. Bosons

E_F

Thermal Fermions: T>T_F

Degenerate Fermions: T<<T_F

Thermal Bosons: T>T_c

BEC+Thermal Bosons: T≲T_c

pure BEC: T<<T_c

Thermal Rb-87: T>T_c

BEC+Thermal Rb-87: T≲T_c

Rb-87 BEC: T<<T_c

Equation of Evolution

term

BECs in Space

- Sikivie & Yang (2009) propose that QCD axion dark matter must form Bose-Einstein condensates during radiation era, m=10^-5 eV
- Motivation: $\mathcal{N} \sim 10^{61}$ & $T_{BEC} \sim 500 eV * (\frac{f_a}{10^{12} GeV})^{\frac{1}{2}}$
- BEC from gravitational thermalization, not ϕ^4 (self) interactions
- BEC has correlation length that is Hubble scale

arXiv:0901.1106

arXiv:1111.1157

Does ALP Dark Matter form Bose-Einstein Condensates?

- Yes!
- QCD: in small, locally-correlated solitons — bose stars/axsteroids.
- ULA: halos with solitons at their core
- Sign of the interaction determines coherence length/soliton size.

A schematic picture

Fuzzy Dark Matter

The Problem of Axion Fields

- For cosmological purposes is it a classical or quantum field?
- Mean field approximation is a quantum calculation that allows treatment as a classical field
- But how do we account for interactions?
- Levkov et al. (2018) argue a axions evolving under their self-gravity (without self-interactions) not a standard Boltzmann collision process
- Ignore self-interactions in the analysis

Don't use Boltzmann! Get your times sorted!

- Kirkpatrick, Mirasola, and Prescod-Weinstein (2020): high occupancy number implies axions cannot be localized to a definite position and momentum in phase space, even during short-range self-interactions
- Use the four-point correlation function, not Boltzmann
- Time scales involving self-interactions different from gravity-only
- Sikivie was right: you cannot get thermalization into a coherent momentum state during lifetime of universe without gravity

But self-interactions can still have an impact

- Kirkpatrick, Mirasola, and CPW find that selfinteractions are subdominant in setting time scale for initial condensation
- Glennon and CPW find that self-interactions are significant for the dynamical evolution of the system
- Let's gain some intuition for why this might be the case:

Lab BEC in Attractive Interactions

- Lithium-7 has 3 protons and 3 electrons —> boson
- Negative scattering length
 attractive interaction
- Theory said it should not form a stable BEC
- But it did! For ~ 1000 atoms or less.
- Lots of intriguing questions here.

Hulet Group, Rice University

Glennon and CPW, arXiv:2011.09510

The Incredible Flexible Axion (Like Particle)

- Strong CP problem?
- Dark matter?
- Solving the electroweak hierarchy problem?

Electroweak Hierarchy Problem

• Electroweak Scale/Higgs Mass is $\sim 10^{16}$ times smaller than Planck scale

- Why is the Higgs mass so light?
- Fine tuning problem
- Solvable with Anthropics
- And now the relaxion (Graham et al.)

Relaxion: Slow rolling during inflation

until it naturally lands at right Higgs scale

Constraints?

- $H << \Lambda_{QCD}$ so classical evolution dominates
- H > $\frac{M^2}{M_{pl}}$ to prevent back reaction onto inflaton
- inflation must be long-lasting $\sim 10^{50}$ e-folds
- the coupling g must be extremely small

SOLVED? PARTICLE PHYSICS PROBLEMS

- How do we solve the strong CP problem?
- What is the dark matter?
- How do we solve the hierarchy problem?
- What if we solved all three at once?
- Original relaxion mechanism can't.

$$-rac{n_f g^2 heta}{32 \pi^2} F_{\mu
u} ilde{F}^{\mu
u}$$

Relaxion: Slow rolling during inflation

until it naturally lands at right Higgs scale

A Thermal Universe

- So far, studied in zero-temperature regime
- BUT axion mass is temperature-dependent

High temperatures

$$m_{\phi}(T) = (2 \times 10^{-2}) \left(\frac{\lambda}{f_a}\right) \left(\frac{m_u m_d m_s}{\lambda^3}\right)^{1/2} \left(\frac{\lambda}{\pi T}\right)^4 \left[9 \ln\left(\frac{\pi T}{\lambda}\right)\right]^3$$

"Low" temperature

$$m_{\phi} = \frac{1}{f_a} \frac{(m_u m_d)^{1/2}}{(m_u + m_d)} f_{\pi} m_{\pi}$$

Account for Temperature-Dependence

$$-gM^{2}\phi + (M^{2} - g\phi)|h^{2}| - (F(h)/r)(m_{a}^{2}f_{a}^{2})\cos(\phi/f_{a})$$

Temperature dependence means:

QCD contribution during inflation << after inflation

Relaxion solves three problems in our patch if

$$r > 10^{10}$$

 $\propto v.e.v_H$ r = m(T=0)/m(T)

The Right Value/Patch

- If relaxion is no longer classical, then backreaction produces several causally disconnected patches
- How do we know we are in the right patch, with the right relaxion value?
- We use the Fokker-Planck equation to show that the typical patch will have the right values

$$\frac{\partial P}{\partial t} = \frac{\partial}{\partial \phi} \left(\frac{H^3}{8\pi^2} \frac{\partial P}{\partial \phi} + \frac{V'P}{3H} \right)$$

Ultralight Axions

Amin, Gluscevic, Grin, Hlozek, Marsh, Poulin, Prescod-Weinstein, & Smith 2019 arXiv:1904.09003

Is HEA the future of HEP?

Team STROBE-Ax, led by Prescod-Weinstein, produced for NASA white paper arxiv:1903.03035

We're just beginning! But, this is the end of the talk.

- Axions are worth your attention for many reasons!
- The phenomenology of the axion is an exciting for astrophysics and early universe cosmology
- Ongoing work: understanding galaxy-halo connection in context of axion physics
- Thank you!