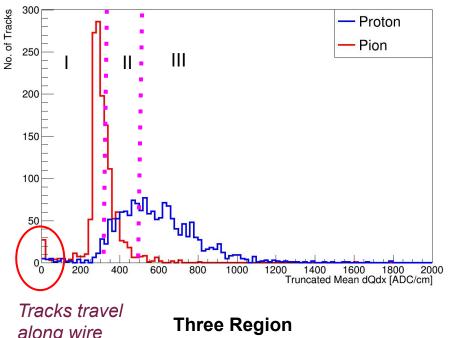
Proton Identification

Libo Jiang (Virginia Tech)

MC Sample Used in This Analysis


https://wiki.dunescience.org/wiki/Look_at_ProtoDUNE_SP_data

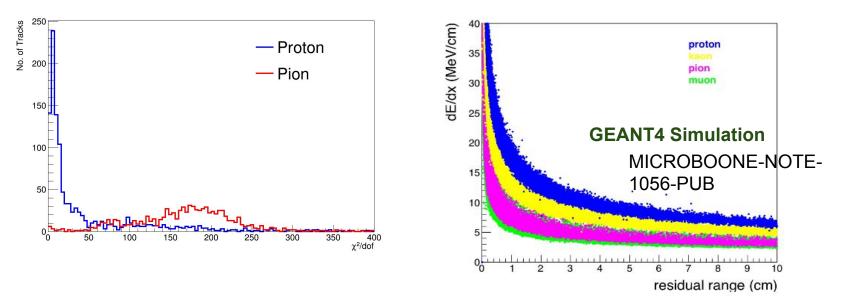
MC with SCE on

Momentum (GeV/c)	Definition Name	SAM Query Links
1	PDSPProd2_MC_1GeV_reco_sce_datadriven	describeଙ୍କ, summaryଙ୍କ, filesଙ୍କ
2	PDSPProd2_MC_2GeV_reco_sce_datadriven	describeଙ୍କ, summaryଙ୍କ, filesଙ୍କ
3	PDSPProd2_MC_3GeV_reco_sce_datadriven	describeଙ୍କ, summaryଙ୍କ, filesଙ୍କ
6	PDSPProd2_MC_6GeV_reco_sce_datadriven	describeଜ, summaryଜ, filesଜ
7	PDSPProd2_MC_7GeV_reco_sce_datadriven	describeଜ, summaryଜ, filesଜ

Started the study of proton identification with the pion beam sample at 2.0 GeV

Truncated Mean dQdx

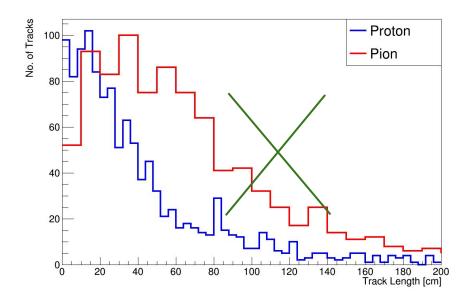
Truncated Mean dQdx was calculated form collection plane with ADC/cm.


Calculation

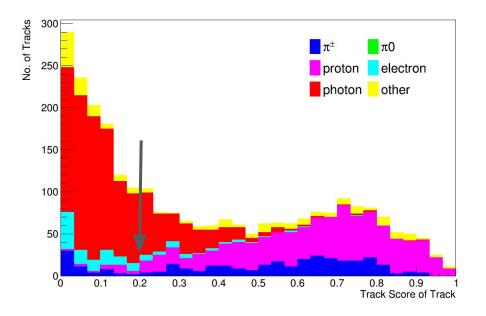
- Take the dQdx of all the hits for a \bigcirc given track and save as a vector
- Get the median value and the RMS of \cap the vector elements
- Select the hits with dQdx greater than Ο median - n*RMS and less than median n*RMS; save all the hits in this range in a new vector (n=2)
- Get the mean value of the new vector 0

along wire direction?

- I. Pion region ([™] dQdx<300)
- II. Transition region (need further background subtraction)
- III. Proton region ([™] dQdx>500)


Chi2: shows agreement between theoretical prediction and measurements

ndof: number of hits in the collection plane

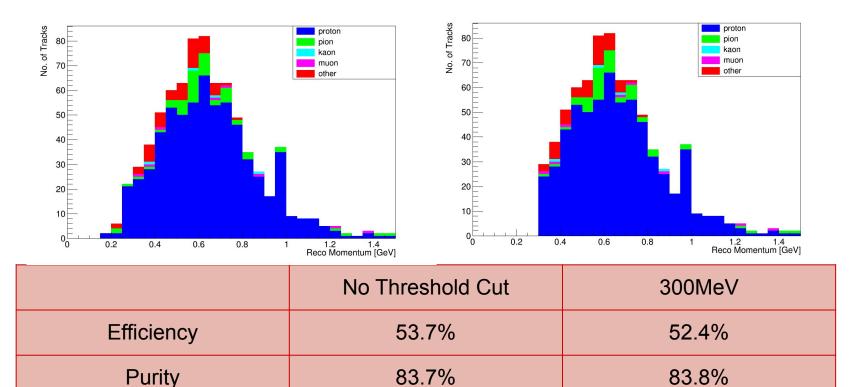

$$PID = \chi^2_{\text{proton}}/ndof = \sum_{hit} \left(\frac{(dE/dx_{measured} - dE/dx_{theory})}{\sigma_{dE/dx}}\right)^2/ndof$$

Track Range of Proton vs Pion result

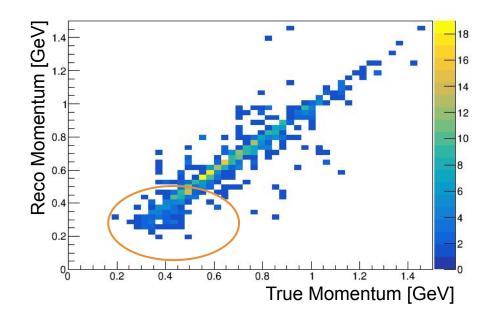
- No obvious separation in track range
- Even no obvious separation in the truncated mean dQdx vs residual range.

Track Score of Tracks

- Pure Background (non proton tracks) Region with track Score < 0.2
- Further background subtraction can be done with the combination of the other variables

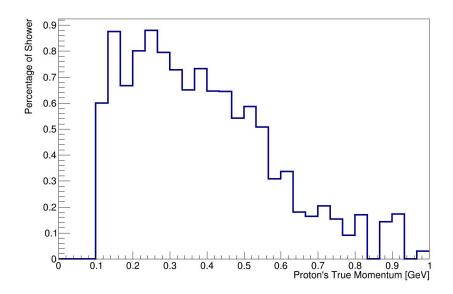

Proton Identification Strategy

- A proton identification scheme is based on truncated mean dQdx, track(EM) score and chi2
- Background if:
 - Truncated mean dQdx < 300
 - \circ 300<Truncated mean dQdx < 500 && chi2 with proton hypothesis > 200.
 - Track Score <0.2
- More sophisticated scheme can be developed.
 - But considering the efficiency and purity, the current result is pretty good.
 - Complexity will make systematic evaluation more complicated.


Proton Identification Strategy

- Efficiency :
 - Denominator: Number of true protons with/o (true) momentum cut
 - Numerator: Number of true protons with/o (reco) momentum cut
 - Definition is different from the event reconstruction/selection efficiency
- Purity:
 - Signal / background after proton identification with/o momentum cut

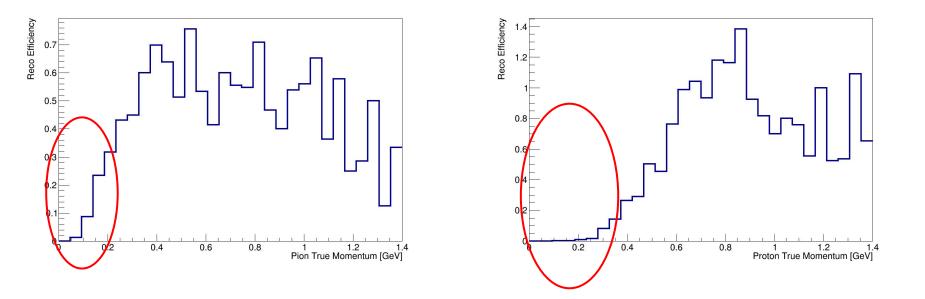
Final Efficiency and Purity



Momentum Resolution of Selected True Protons

- Reco Momentum is calculated based on Track Range
- At low momentum region, a lot of proton's momentum are underpredicted, which means cutting off the tracks with reco momentum < 0.3 GeV might cause the removal of the tracks with true momentum > 0.3 GeV
- Diagonal dist shows a good agreement and precision

Protons mis-identified as showers


- The lower the momentum, the more protons reconstructed showers.
- When the momentum around 0.2-0.3 GeV, even ~80% of the protons reconstructed as showers.
- 0.3 GeV is reasonable as the momentum cut

Summary & Plan

- Proton identification algorithm was developed based on the truncated mean dQdx, chi2 and track score of the track candidates
- Purity 84% and Efficiency 54% after the identification
- Still some space for improvements for the selections by varying the cut values
- The lower the momentum, the more protons are identified showers
- Next Step
 - Run more samples to confirm the proton identification scheme
 - Similar Scheme can be implemented in the pion identification
 - Select pion absorption sample based on this particle identification
 - Prepare a memo/internal note for the particle identification

Contact me if anyone is interested to join or collaborate (email: jiangl@vt.edu)

Efficiency of Pion and Proton Reconstruction

Lower momentum, Lower reconstruction efficiency