

1

Impact of SCE on Reconstructed π^{o} Mass

Michael Mooney Colorado State University

ProtoDUNE EM Shower Task Force Meeting November 14th, 2019

- Two space charge effect (SCE) corrections should be made to our π^o events:
 - Spatial correction: impacts angles of photons (thus π^{o} opening angle), photon dE/dx
 - E field correction: impacts photon energy (through recombination)
- Explore potential recombination models we might want to use in π^o analysis
 - Different implications for EM shower energy scale
- Also discuss first studies of impact of SCE on reco. π^{o} mass
 - Assumes we are using knowledge of π° decay point and photon shower start points to detetermine opening angle (should give best mass resolution)

- Making use of a sample of roughly 2300 π° events (from beam π⁺ interactions), including location of π° decay, location of each photon interaction start point, and energy of each photon
 - Select only candidates with exactly two photon daughters
- Reconstruct π^o mass for four cases:
 - No SCE simulation included
 - Only E field SCE simulation included (impacts photon energies)
 - Only Spatial SCE simulation included (impacts opening angle)
 - Full SCE simulation included (impacts both)
- Repeat above study for three different recombination models:
 - Modified box model
 - ICARUS Birks model
 - Scaling from Kubota data (charge yield from ~1 MeV beta decays)

E Field SCE Corrections

- ◆ Can both simulate and correct for impact of E field through recombination → impacts charge/energy scale
 - However... which recombination model to use?
 - Complicated question... use different models for different parts of shower, based on topology?

Modified Box Model

- Can both simulate and correct for impact of E field through recombination → impacts charge/energy scale
 - However... which recombination model to use?
 - Complicated question... use different models for different parts of shower, based on topology?

ICARUS Birks Model

- ◆ Can both simulate and correct for impact of E field through recombination → impacts charge/energy scale
 - However... which recombination model to use?
 - Complicated question... use different models for different parts of shower, based on topology?

Mod. Box w/ Kubota Scaling

- Can both simulate and correct for impact of E field through recombination \rightarrow impacts charge/energy scale
 - However... which recombination model to use? •
 - Complicated question... use different models for different parts of • shower, based on topology?

Results: Mod. Box Model

Results: Kubota Scaling

- Kubota dataset uses ~1 MeV electrons is non-MIP-like nature of low-energy electrons contributing to discrepancy?
- LArNEST (LAr Noble Element Simulation Technique) developing ionization/scintillation model using "electron recoil" data at various energies and electric fields
 - Would account for non-MIP-like features with energy dependence, which can be translated to a dE/dx dependence
 - If different microphysics at play for EM showers, this model would be more appropriate to use (informed by measurements made actually using electrons/gammas)
- LArNEST being developed by CSU grad. student Justin Mueller
- Some preliminary LArNEST fit results on following slides

Prelim. LArNEST Fit Results

J. Mueller, E. Kozlova

onization yield, electrons/keV

Charge Yields

Recoil energy, keV

Prelim. LArNEST Fit Results

J. Mueller, E. Kozlova

-ight yield, photons/keV

Light Yields

Recoil energy, keV

- Impact of SCE non-negligible compared to reco. smearing (see above for previous ML result for reconstructed π^o mass in MC)
- Spatial SCE impact more important; E field SCE impact becomes more important for certain recombination models (ICARUS Birks model, measurements with beta decays)
- Use LArNEST For electron/photon shower recomb. model?

BACKUP SLIDES

Spatial SCE Corrections

- Can correct position of 3D points using SCE corrections
 - Do this and recalculate photon angles, Needed to improve matching of photon pairs to vertex