
Supercomputing Notes
Focusing on Science and GPUs

A. Norman

GPU Impressions

• Common theme from all major GPU players booths
(Nvidia, AMD, Intel)
– “Our specialized <language, libs, API> is what you should use”
– “But if you don’t you should use OpenMP, you’ll take a 10-20% performance hit on most

standard code relative to hand optimized algorithms”
– Booths were all showing the same benchmarks

• Compiler booths are similar
– Emphasize their support for OpenMP 4.x
– All (but PGI) claim to have the best implementation*
– Nvidia emphasizing pre-optimized libraries of

standard algorithms for STL containers

*on whichever flavor of
GPU they specifically support

OpenMP Training
• New spec 5.0 is out but…

– Real progress is on distilling down to the “common
core” and compiler support for 4.5

– Essential directives and patterns that cover most
scientific use cases
• OpenMP was touting this (passing out cheat sheets),

talking up new book.
• Major initiative towards onboarding applications quickly

– Compilers are better optimization for common core
directives (i.e. sensible default behaviors less tuning)
• https://www.openmp.org/resources/openmp-compilers-tools/

– Tutorial was actually VERY good (joint with NERSC)
• Easy to replicate

– Low hanging fruit for some experiment code

• GPU offloading a minimal extension to common core

OpenMP GPU Training

• Simplified offloading to target devices in the base
part of the spec
– Builds directly off common core directives
– Can effectively swap out a single directive in most

cases to go from OpenMP parallel to OpenMP GPU
accelerated

– Performance is “meh…” without tuning and memory
model considerations

– Example codes were getting get 4-8x ish boosts
– Tune examples get 20x

• Value is in portability and ease of migration
– Very real possibility for our science codes that don’t

lend themselves to hand optimization
– Documentation and training materials are good

GPU Hackathon

• Connected with GPU Hackathon team
– Learned more about what to expect and how to schedule a hackathon

(this is in the NESAP context of our NESAP project)
– For application porting they want:

• 1-3 people to participate (coder, algorithm person, person for testing)
• Start 4-6 week before actual hackathon
• Need code to compile using Cray compiler
• They want a kernel identified if possible, but are willing to work with more generalized code

•

Rescale

• Single API (and accounting!) for AWS, Google, Microsoft

• Can buy time through them or…
– Bring your own allocations

(specifically asked about Heidi usecase of a Microsoft Educational allocation)

• Claim to have HARD CAPS and cut offs on per group basis and linked to funding
and administrative limits.
– Want to see accounting interface

• This actually may be a viable path to avoid separate integration for each cloud
system. Would want to see more.

IBM

• Was given the briefing (hard sell) on LSF batch

• Claim is that it can scale now.
• Lacks various accounting controls and monitoring

• Want us to use it with HEPCloud
• Want to do a more complete briefing for us

