

Analysis of the T-980 experimental data

V.Previtali G. Annala, R.Assmann, N. Mokhov, S. G. Peggs, S. Redaelli, D.Still

- Si o-shaped crystal, 5 mm long, 410 µrad bending angle
- Pin diode downstream of the crystal, used to measure the inelastic interactions at the crystal location
- Collimator E03 (horizontal, p collimator) 23.7 m downstream
- LE0 BLM counters immediately downstream the collimator: total losses at the collimator location
- E1 scintillating paddles: gated counters for losses at the E03 collimator. They can distinguish between bunched and abort gap beam.

fnal - 3 Dec 2008

Once we have the crystal as leading edge, we perform two different measurements:

- Angular scan: change the crystal orientation and measure losses at the E03 collimator
- 2. Collimator scan: keep the angle of the crystal fixed, and change the horizontal position of the collimator E03

Angular scan: what we found...

The signal for bunched beam is noisy: a normalization is needed. (how to do it???)

The maximum of the channeling peak is at -240 µrad.

The measured acceptance of channeling is ~200 µrad : **much larger than expected! (~12 µrad).**

Possible reasons are investigated further

- We can measure the displacement between the channeled and the nonchanneled beam
- The expected displacement (for 410µrad kick) is 9.5 mm

- 1. Why is the channeling peak acceptance much larger (~200 µrad) than expected (~20 µrad)?
- 2. Why we do not see a clear VR effect?
- 3. Why the measured displacement (~7 mm) for the channeling peak is lower than the expected one (9.6 mm)?
- 4. What is the peak at ~250/300 µrad in the angular scan? Is there a third peak around ~700 µrad?

Hypothesis

Different attempt have been done to explain these features. Two hypothesis:

- 1. Feature of the beam (momentum offset)
 - Off momentum particles have a different incoming angle: can this explain the channeling peak width?
 - Off momentum particles have a different displacement at the collimator location: how much is the difference?
- 2. Feature of the crystal (mis-cut angle)
 - What is the effect of the mis-cut on the channeling acceptance?
 - What is the effect of the mis-cut on the observed displacement at the collimator location?

Hypothesis

Different attempt have been done to explain these features. Two hypothesis:

- 1. Feature of the beam (momentum offset)
 - Off momentum particles have a different incoming angle: can this explain the channeling peak width?
 - Off momentum particles have a different displacement at the collimator location: how much is the difference?
- 2. Feature of the crystal (mis-cut angle)
 - What is the effect of the mis-cut on the channeling acceptance?
 - What is the effect of the mis-cut on the observed displacement at the collimator location?

Off-momentum particles

Taking into account that:

- the dispersion at the crystal (and at the collimator) is quite high (2m!)
- we are channeling also the abort gap beam

- the abort gap beam has high $\Delta p/p$ values We tried to evaluate the effect of dealing with large off-momentum particles

For reference:

1 σp/p in the tevatron is 140 MeV The RF bucket height is 450 MeV In the abort gap particles are just outside of the separatrix electron lens heating is turned on

Off-momentum particles: angular spread

 $\delta p/p$

 σ_{cru}

g= 2.9 10⁻³ σp/p 2.9 10⁻³

g function = $\alpha + \beta \eta'/\eta$

The grazing condition requires that, at the crystal location, the maximum betatron extension of the particle plus the offset given by the dispersion is equal to the x coordinate of the crystal's edge => careful: the synchrotron oscillation is neglected in this first approximation.

The angular spread is only ~1.6 μ rad for particles with $\Delta p/p = 4 \sigma_p$!

The momentum offset cannot explain a 200 µrad-wide channeling peak

Every kick changes the amplitude and the phase of the particle. The new amplitude and the phase shift depend on the initial amplitude: different outcomes for particles with different energy!

Particles with higher $\Delta p/p$, will have different amplitude/phase shift in comparison with on momentum particles => they will have different displacement at the collimator. How much?

Assuming the channeling kick of 410 μrad

Hypothesis

Different attempt have been done to explain these features. Two hypothesis:

- 1. Feature of the beam (momentum offset)
 - Off momentum particles have a different incoming angle: can this explain the channeling peak width?
 - Off momentum particles have a different displacement at the collimator location: how much is the difference?

2. Feature of the crystal (mis-cut angle)

- What is the effect of the mis-cut on the channeling acceptance?
- What is the effect of the mis-cut on the observed displacement at the collimator location?

• Even if we are in the "good" orientation, the mis-cut could affect the particle-crystal interactions. In the following we analyze the problem in details.

preferred miscut

to be avoided !

Entrance face

 Particles are aligned with the crystal planes at the entrance face

- Particles are aligned with the crystal planes at the entrance face:
 - The closest point to the beam is the end of the crystal
 - They will have to cross ~5 µm of amorphous layer before being channeled

fnal - 3 Dec 2008

Valentina Previtali

For each orientation of the crystal, there will be an impact parameter λ_0 for which the particles are aligned with crystal planes

=> **channeling**, but with a reduced channeling angle! This could explain the reduced displacement at the collimator AND the larger channeling peak.

- For each orientation there will be a superposition of the three effects (reduced channeling, VR, VC)
- We channel in each orientation, but with reduced channeling angles! • We can calculate this reduced angle, and **predict the displacement** at the collimator.

NB: Reduced channeling and Volume Capture give the same kick to the particle, but the channeling probability is

Positive mis-cut angle:

comparison with measured data

- We selected 6 different orientations for new collimator scans:
 - 320 µrad
 - 295 µrad
 - 287 µrad
 - 237 µrad
 - 200 µrad

losses [au]

- 50 µrad
- For each point we measure the displacement of the channeled peak, and compare it with the expected displacement

All toghether...

All toghether... Gaussian fits

LE033 losses versus collimator position (E03HCP)

Displacement for different orientations of the crystal

measured and expected

All toghether... more questions

What is this behavior? It is common to all the angular scans.

It is equivalent to a r.m.s. kick of **100 µrad** ! Cannot be amorphous (typical kick 3.2 µrad) or single VR (-6 µrad). Cannot be de-channeling (cannot be larger than the channeling kick). Maybe **multiple volume reflection?**

This effect probably covers the "reduced" channeled peak for small channeling kicks!!! That's why we do not observe the correct displacement for the -50 µrad orientation.

alentina Previtali

maybe the crystal is almost aligned in vertical position?

More questions?

- What is the peak we see at 250-300 µrad in the angular scan? Is there a third peak at ~700 µrad? Are they channeling peaks? Are we almost aligned in vertical position?
- What is the final slope we observe in each collimator scan, which corresponds to a typical kick of -100 µrad? Is it multiple volume reflection?
- What is the effect of the electron lens in the particlecrystal dynamic?
- Is the synchrotron oscillation playing an important role? Is the "grazing" assumption valid? Should we evaluate in more details the impacting angle of off momentum particles?

Even more questions...

(from Steve)

- 1.what would you expect to see in the H8/RD22 single particle line, with this crystal?
- 2.What happens if the electron lens heating is turned off/down?
- 3.What happens if the RF voltage is turned up/down (moving the separatrix)?
- 4.What happens if the RF frequency itself is slightly changed, shifting the underside of the separatrix slightly up/down?
- 5.Synchrotron oscillations MUST be playing a vital role
 - a) in providing lots of time for betatron heating as the protons go oh-so-slowly past the unstable fixed point
 - b) in helping to determine the actual spread of impact parameters as the protons go at normal speed (as in a regular synchrotron oscillation) past the bottom of the RF bucket.

Conclusions

- We trust the characterization of the crystal made in Ferrara (V. Guidi et al.): we assume the bending angle=410 µrad.
- We observe a channeling acceptance that is far too large.
- We observe a displacement of the channeled beam at the collimator which is lower than expected (= lower kick).
- Different hypothesis to explain this features:
 - Feature of the beam (momentum offset)
 - Feature of the crystal (mis-cut angle)
- The momentum offset does not have large influence on the displacement.
- The mis-cut angle can partially explain the results we observe.
- A lot of open questions...
- Further investigations will be done in the next studies.