The Majorana vs. Dirac Question

The answer will tell us something about the origin of the tiny neutrino masses.

A New Approach

Baha Balantekin, André de Gouvêa, B.K. arXiv:1808.10518, Phys.Lett. B789 (2019) 488

Baha Balantekin, B.K.

arXiv:1805.00922, Ann.Rev.Nucl.Part.Sci. 68 (2018) 313

B.K.

arXiv:1805.07523, Proc.Moriond Electroweak (2018) 323

and ongoing work by Jeffrey Berryman, Patrick Fox,
 André de Gouvêa, B.K., Kevin Kelly, Jennifer Raaf

Suppose we discover a <u>Heavy Neutrino N</u> whose decays we can study.

(Several hundred MeV < m_N < Several TeV)

A heavy neutrino is being sought at CERN, J-PARC, and Fermilab. If a detector has electric charge discrimination, one can collect, for example, separate samples of $N \rightarrow \mu^- \pi^+$ and $N \rightarrow \mu^+ \pi^-$.

If N is a Majorana fermion N^M

$$\Gamma(N^{M} \to \mu^{-}\pi^{+}) = \Gamma(N^{M} \to \mu^{+}\pi^{-})$$

There will be as many $\mu^-\pi^+$ pairs as $\mu^+\pi^-$ ones from N decays.

If *N* is a Dirac fermion
$$N^D$$

 $N^D \to \mu^- \pi^+$ only, and $\overline{N^D} \to \mu^+ \pi^-$ only.

If a detector *does <u>not</u> have electric charge discrimination*, we can measure only *the sum* of the $N \rightarrow \mu^- \pi^+$ and $N \rightarrow \mu^+ \pi^-$ decays.

If N is a Majorana fermion N^M

CPT \implies an *isotropic* $\mu\pi$ angular distribution.

If N is a Dirac fermion N^D

The *Standard Model* \implies a very <u>non-isotropic</u> $\mu\pi$ angular distribution.

Real-world sensitivities to the distinction between Dirac N and Majorana N are being explored.

Leptonic mixing implies that if N is a Majorana fermion, so are all the other neutrinos.

"The Search for Leptonic CP Violation"

for the CERN COURIER

This search is universally described as the search for -

$$P\left(\overline{\nu}_{\mu} \to \overline{\nu}_{e}\right) \neq P\left(\nu_{\mu} \to \nu_{e}\right)$$

But what if $\overline{\nu} = \nu$??

The actual experiment will —

Compare

with

