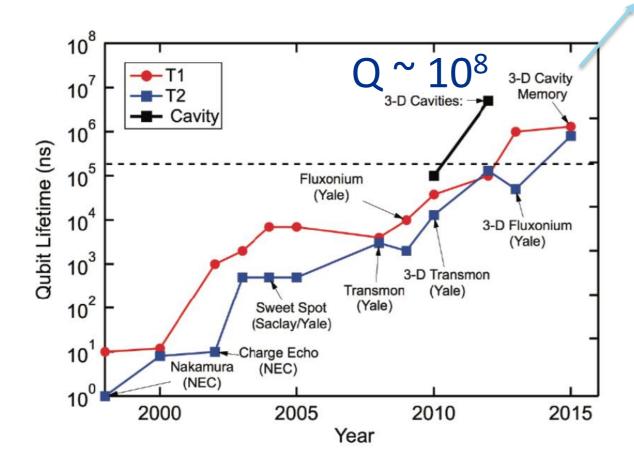
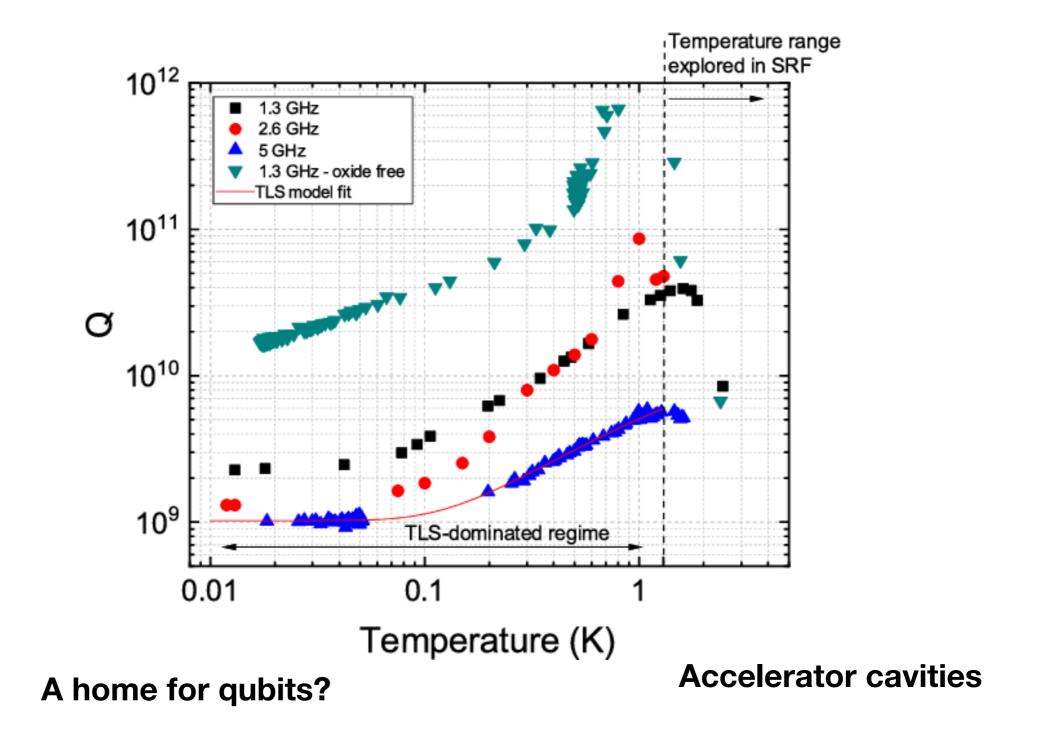
QIS


roni

Theory-treat, Nov 2019

High Q SRF cavities for improved coherence

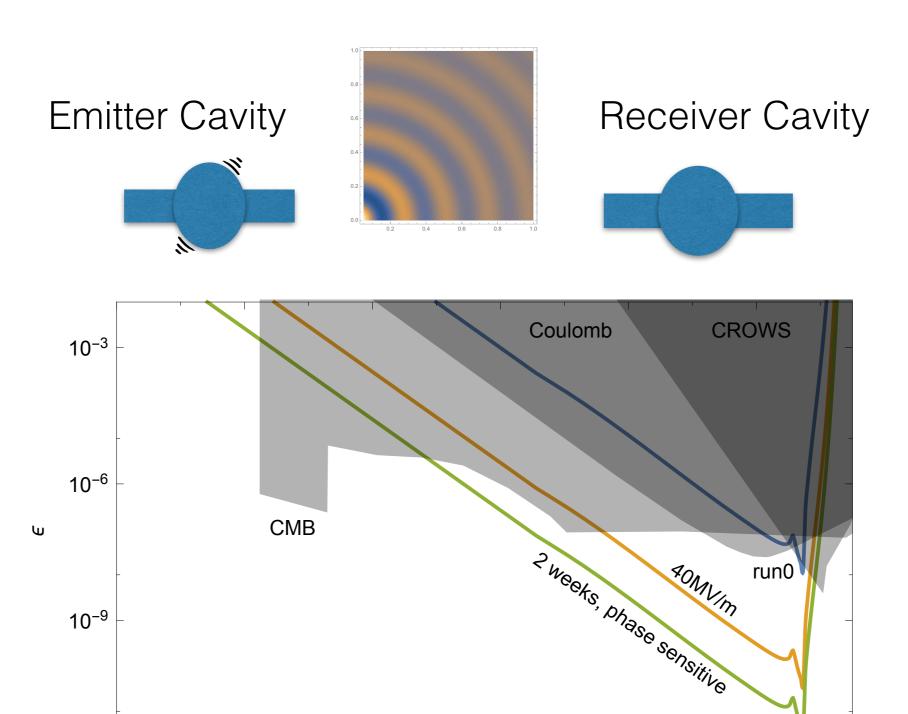
Potential of up to ~10 <u>seconds</u> of coherence


M. H. Devoret and R. J. Schoelkopf, *Science* 339, 1169–1174 (2013) [SEP]

1-cell Fermilab cavities of various frequencies

SRF may be a game changer.

Fermilab hired Eric Holland - a superconductor transmon expert.


If these guys pull i off, Fermilab may find it self as home to the worlds best quantum computer.

It would be good if it is used to calculate something HEPy.

The hardware will initially be very specialized. Development of the algorithm you want to run may need to happen as the hardware is developed.

Dark SRF

ongoing work w/ APSTD. Also involved: Josh and Zhen.

10⁻⁸

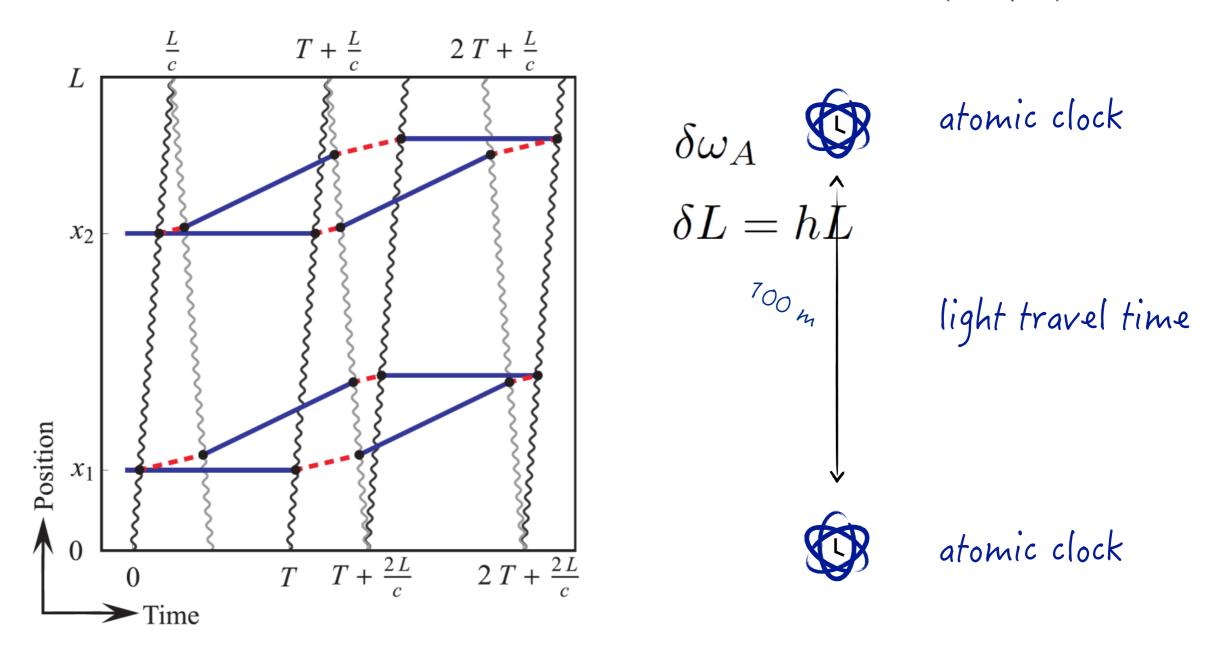
10⁻⁶

DarkSRF – Preliminary

10⁻¹²

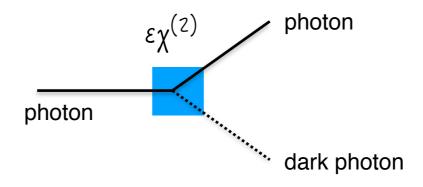
10⁻¹⁰

 $m_{A'}[eV]$


10⁻¹⁴

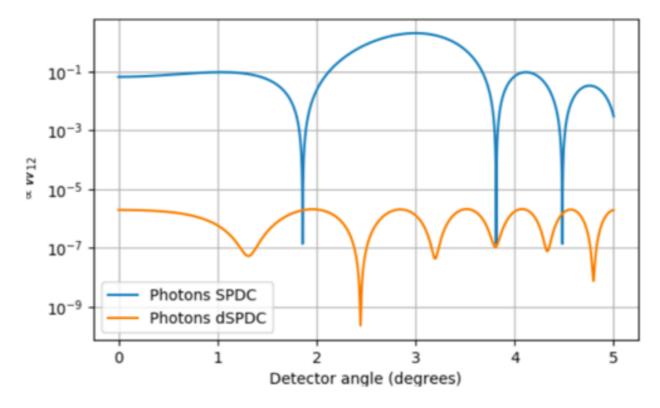
10⁻¹²

10⁻¹⁶


MAGIS 100

A 3 clock comparison (2 atomic, 1 light travel time): $\Delta\phi\sim\omega_A\,(2L/c)$

Nonlinear optics: there are crystals with effective 3-photon and 4-photon vertices.


→ associated photon+dark photon production.

Mono-photon on the optics table!

with Estrada's group.

Quantum People: Staff

Roni (28%)

Jime Simone (25%)

QIS FQI people:

Just moved to our floor:

Alex Macridin (staff)

Andy Li (postdoc, 2018-2021?)

QIS theory postdocs:

Ciaran Hughes 2016-2019 Lattice 2019-2021 quantum

Hank Lamm 2019-2022

We may have funds for more QIS? Simulation? Sensors?

Ciaran Huges

1. Exploring S-Wave Threshold Effects in QCD: A Heavy-Light Approach

Estia Eichten, Ciaran Hughes. Nov 5, 2019. 10 pp. FERMILAB-PUB-19-558-T e-Print: arXiv:1911.02024 [hep-lat] | PDF

> <u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u> <u>ADS Abstract Service</u>

Detailed record

2. Quantum Computing as a High School Module

Anastasia Perry (Illinois Math. Sci. Acad.), Ranbel Sun (Unlisted, US, MA), Ciaran Hughes, Joshua Isaacson, Jessica Turner (Fermilab). Ar FERMILAB-FN-1077-T

e-Print: arXiv:1905.00282 [physics.ed-ph] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service; OSTI.gov Server; Fermilab Library Server (fulltext available); Link to Fulltext

Detailed record

3. Improving the kinetic couplings in lattice nonrelativistic QCD

Christine T.H. Davies (Glasgow U.), Judd Harrison (Glasgow U. & Cambridge U., DAMTP), Ciaran Hughes (Cambridge U., DAMTP & Ferm von Hippel (U. Mainz, PRISMA), Matthew Wingate (Cambridge U., DAMTP). Dec 30, 2018. 19 pp. Published in Phys.Rev. D99 (2019) no.5, 054502 MITP/18-129, FERMILAB-PUB-18-698-T DOI: 10.1103/PhysRevD.99.054502 e-Print: arXiv:1812.11639 [hep-lat] | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

ADS Abstract Service; OSTI.gov Server; Link to Article from SCOAP3; Fermilab Library Server (fulltext available); Link to Fulltext

Detailed record

4. Digitizing Gauge Fields: Lattice Monte Carlo Results for Future Quantum Computers

Daniel C. Hackett (Colorado U.), Kiel Howe, Ciaran Hughes (Fermilab), William Jay (Colorado U. & Fermilab), Ethan T. Neil (Colorado U. &

Published in Phys.Rev. A99 (2019) no.6, 062341 FERMILAB-PUB-18-615-T DOI: <u>10.1103/PhysRevA.99.062341</u> e-Print: <u>arXiv:1811.03629</u> [quant-ph] | PDF <u>References</u> | <u>BibTeX</u> | <u>LaTeX(US)</u> | <u>LaTeX(EU)</u> | <u>Harvmac</u> | <u>EndNote</u> <u>ADS Abstract Service; OSTI.gov Server; Link to Fermilab Library Server (fulltext available); Link to Fulltext</u>

Detailed record - Cited by 9 records

Currently working on: Informing lattice S2N problem with QIS tools. Initial state prep input from LQCD to Quantum simulation. Precision Model-Independent Bounds from Global Analysis of b → cℓv Form Factors Thomas D. Cohen, Henry Lamm (Maryland U.), Richard F. Lebed (Arizona State U.). Sep 23, 2019. 13 pp. Published in Phys.Rev. D100 (2019) no.9, 094503 DOI: 10.1103/PhysRevD.100.094503 e-Print: arXiv:1909.10691 [hep-ph] | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service; Link to Article from SCOAP3 Detailed record - Cited by 1 record

2. Parton Physics on a Quantum Computer

NuQS Collaboration (Henry Lamm *et al.*). Aug 27, 2019. 7 pp. e-Print: <u>arXiv:1908.10439 [hep-lat] | PDF</u> <u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u> <u>ADS Abstract Service</u> Detailed record - Cited by 1 record

3. Nucleon properties from basis light front quantization

Chandan Mondal (Lanzhou, Inst. Modern Phys.), Siqi Xu, Jiangshan Lan, Xingbo Zhao, Yang Li (Geneva U.), Henry Lamm (Maryland U.), Jame Published in **PoS DIS2019 (2019) 190** DOI: <u>10.22323/1.352.0190</u> Conference: <u>C19-04-08 Proceedings</u>

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote Link to Fulltext

Detailed record

4. Gluon Field Digitization for Quantum Computers

NuQS Collaboration (Andrei Alexandru (George Washington U. & Maryland U.) *et al.*). Jun 26, 2019. 5 pp. e-Print: <u>arXiv:1906.11213 [hep-lat] | PDF</u> <u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u> <u>ADS Abstract Service</u>

Detailed record - Cited by 4 records

5. General Methods for Digital Quantum Simulation of Gauge Theories NuQS Collaboration (Henry Lamm et al.). Mar 19, 2019. 14 pp.

Published in Phys.Rev. D100 (2019) no.3, 034518 DOI: <u>10.1103/PhysRevD.100.034518</u> e-Print: <u>arXiv:1903.08807</u> [hep-lat] | PDF <u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u> <u>ADS Abstract Service; Link to Article from SCOAP3</u>

Detailed record - Cited by 9 records

6. σ Models on Quantum Computers

NuQS Collaboration (Andrei Alexandru (George Washington U. & Maryland U.) *et al.*). Mar 15, 2019. 5 pp. Published in Phys.Rev.Lett. 123 (2019) no.9, 090501 DOI: <u>10.1103/PhysRevLett.123.090501</u> e-Print: <u>arXiv:1903.06577</u> [hep-lat] | PDF <u>References</u> | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote <u>ADS Abstract Service; Link to Article from SCOAP3</u>

Detailed record - Cited by 5 records

15. Simulation of Nonequilibrium Dynamics on a Quantum Computer

Henry Lamm (Maryland U.), Scott Lawrence (Maryland U., College Park). Jun 18, 2018. 5 pp. Published in Phys.Rev.Lett. 121 (2018) no.17, 170501 DOI: <u>10.1103/PhysRevLett.121.170501</u> e-Print: <u>arXiv:1806.06649</u> [quant-ph] | PDF <u>References</u> | <u>BibTeX</u> | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

ADS Abstract Service Detailed record - Cited by 10 records

Hank Lamm

QIS visitors→staff?:

Martin Savage

Coming mid-february for ~ 1 year. Potentially staying for good.

Area	Task	Institution(s)
Simulation	Lattice scalar field theory:	Caltech, Fermilab, UIUC, UW-INT
	(state preparation, time-evolution,	
	scattering, topology, phase transitions,	
	entanglement, digitization)	
Simulation	Lattice gauge theory and QCD:	Caltech, Fermilab, Purdue, UIUC, UW-INT
	(qubit mapping and plaquettes,	
	time evolution, circuits,	
	inelastic processes and fragmentation,	
	entanglement, S-matrix, topology, scattering)	
Analysis	Algorithms for event ensembles	MIT
	Hybrid algorithms for preprocessing	
	QIS-inspired classical algorithms	
Sensors	Cavity sensor development	Fermilab
	Dark SRF theory support	
	MAGIS-100 long range interactions	
	Dark photon searches w/ nonlin. optics searches	
	DM search w/ photon pairs in nonlin. optics	
	Quantum limited impulse detectors for DM	
	Quantum sensors for dark radiation	
	Spin precession experiments and neutrinos	

Table 1.1: Research topics and collaborating institutions. Further details are given in the budget justification.

Year	Milestones	
1	State prep. of entangled free lattice scalar QFT with $L \ge 8$ and $n_Q \ge 2$ qubits per site State preparation of 2-dim Yang-Mills gauge theory with $n_P \ge 4$ and $j_{\text{max}} \ge \frac{1}{2}$ Simulations of topological features of 1-dim theories with domain-wall fermions with $L \ge 8$ Simulations of parton distributions in the Schwinger model with $L \ge 8$ Analyze matching of HEP-relevant theories to Trotterized time-evolution Hamiltonians Map scalar and Abelian QFT onto SRF-cavity qudit devices Computation of Circuit complexity in O(2) 3d QFT Identify non-trivial constraint on the S-matrix from QIS	
	Develop coreset algorithms for compression of collider data for quantum devices	
	Support dark SRF in launching search for dark photon	
	Develope formalism for dark+visible photon pair in nonlinear optics systems	
2	Adiabatic evolution from free to interacting scalar field theory Adiabatic evolution from strong coupling to interacting gauge theories in low dimensions Detectors and scattering in 2-dim lattice Yang-Mills field truncation studies in lattice Yang-Mills theory First time-evolved scalar and Abelian QFT with SRF-cavity qudit devices Map non-Abelian QFT onto SRF-cavity qudit devices Perform loop-level matching of scalar field theory to Hamiltonian lattice Inclusion of quarks into lattice Yang-Mills	
	Find methods to measure EE in QFT simulators	
	Explore classical and quantum clustering algorithms using the metric space approach	
	Explore multi-mode running for dark SRF	
	Co-development of nonlinear optics based dark photon search	
3	State preparation of interacting lattice scalar field theory State preparation of 3-dim Yang-Mills Perform loop-level matching of Yang-Mills field theory to Hamiltonian lattice First time-evolved non-Abelian QFT with SRF-cavity qudit devices Identify quantum algorithms that capitalize on linear runtime for multi-particle correlators	
	Run protocols for MAGIS-100 to probe long range interactions	
	Concepts for direct detection of dark radiation Study of nonlinear optics systems for DM detection	
4	Two to many scattering in 1-dim lattice scalar field theory Time-evolved scalar, Abelian and non-Abelian QFT with SRF-cavity qudit devices	
	Develop quantum event clustering algorithms	
	Provide theoretical support in analysis of MAGIS-100 data to search for DM	
	Assess feasibility of quantum limited impulse detectors for DM detection	
F	Co-development axion searches with Dark SRF	
5	Two to many scattering in 3-dim lattice scalar field theory	
	Inelastic scattering processes using SRF-cavity qudit systems	
	Implement event clustering algorithms on a quantum computing platform Consider feasibility of neutrino detection with spin precision based on state of field	
	Assess reach of MAGIS upgrade based on MAGIS-100 performance	

Table 1.2: Research milestone organized by the funding cycle year they we expect them to be achieved.