
artdaq Metric Reporting Infrastructure

Eric Flumerfelt

DUNE Dataflow Working Group

20 November 2019



artdaq has a built-in plugin-based metric reporting system, which is designed to 

accept metric data at high rates from the DAQ, aggregate this data in a reasonable 

fashion, and send it to any number of metric back-ends. An artdaq metric sent to the 

backend consists of a name, value, and unit. Metrics are indexed and combined 

using the metric name as a key, and metric names and units are expected to remain 

constant through an entire run of the DAQ software.

The metric reporting implementation is entirely contained within the artdaq_utilities

package, which depends on messagefacility. (artdaq_utilities uses functionality from 

fhicl-cpp, cetlib, and cetlib_except.)

Overview

11/20/2019 Eric Flumerfelt | artdaq Metric Reporting Infrastructure2



artdaq Metric Reporting Infrastructure

11/20/2019 Eric Flumerfelt | artdaq Metric Reporting Infrastructure3

DAQDAQ MetricManagerMetricManager

MetricPluginMetricPlugin

MetricPluginMetricPlugin

MetricPluginMetricPlugin

… …

sendMetricsendMetric



The MetricManager class instantiates and controls the configured MetricPlugins and 

serves as the central switchyard for metrics. It is designed to accept new metric data 

points from artdaq and return control in the smallest amount of time possible. These 

metric data points are placed onto a queue where a dedicated thread distributes them 

to the metric plugins. Metrics are aggregated while sitting in the queue to reduce the 

memory footprint in high-rate situations.

MetricManager

11/20/2019 Eric Flumerfelt | artdaq Metric Reporting Infrastructure4



MetricManager maintains a state 

machine and will not allow metrics 

to be reported when it is not in its 

“running” state 

• MetricManager state may be 

distinct from the artdaq running 

state 

• Some MetricPlugin

implementations use the various 

transitions to connect to their 

back-ends or to zero out the 

metrics at the end of the run.

MetricManager

11/20/2019 Eric Flumerfelt | artdaq Metric Reporting Infrastructure5

PausdPausd



Each metric plugin instance is characterized by its plugin type, reporting interval, and 

enabled metric mask. 

Some metric back-ends (such as Ganglia) are limited in the amount of granularity 

they provide. The reporting_interval parameter ensures that updates are not sent 

more frequently than the backend can handle, conserving CPU and network 

resources.

The MetricPlugin takes care of aggregating metric data points over the reporting 

interval, and each metric is given a set of mode flags (Min, Max, LastPoint, Average, 

etc.) which control this aggregation. If more than one mode is specified, individual 

metric instances are automatically created for each mode (e.g. “MyMetric - Min”, 

“MyMetric - Max”)

MetricPlugin

11/20/2019 Eric Flumerfelt | artdaq Metric Reporting Infrastructure6



Each metric call is also 

assigned a level, and these 

levels determine which 

metrics are reported to which 

plugins. 

Several plugins of the same 

type may be instantiated with 

different metric masks and 

intervals to control reporting.

MetricPlugin

11/20/2019 Eric Flumerfelt | artdaq Metric Reporting Infrastructure7

metrics: { 
brFile: { 

metricPluginType: "file" 
level: 2 

fileName: "boardreader/br_%UID%_metrics.log" 
absolute_file_path: false 
uniquify: true 

} 
brVerbose: { 

metricPluginType: "file" 
level: 5 

fileName: "boardreader/br_%UID%_verbose_metrics.log" 

absolute_file_path: false 
uniquify: true 

} 
} 



MetricPlugin is also the base class that defines the interface that metric plugins for 

new backends should implement. 

Several example metric plugins are included in artdaq_utilities, and several more with 

additional dependencies are available in separate packages (artdaq-ganglia-plugin, 

artdaq-dim-plugin, artdaq-epics-plugin).

MetricPlugin

11/20/2019 Eric Flumerfelt | artdaq Metric Reporting Infrastructure8



• Note that in artdaq-based code, MetricManager is instantiated and configured by the Globals

class (#include “artdaq/DAQdata/Globals.hh”), and should be called via:

Metric Reporting Example

11/20/2019 Eric Flumerfelt | artdaq Metric Reporting Infrastructure9

if (metricMan) metricMan->sendMetric(...); 

#include "artdaq-utilities/Plugins/MetricManager.hh"
#include "artdaq/Application/LoadParameterSet.hh"
#include "fhiclcpp/types/TableFragment.h"
#include <iostream>
struct Config { fhicl::TableFragment<artdaq::MetricManager::Config> metricmanager_config; }; 

int main(int argc, char* argv[]) { 
auto config_ps = LoadParameterSet<Config>(argc, argv); 
artdaq::MetricManager mm; 
mm.initialize(config_ps, config_ps.get<std::string>("application_name", "SimpleMetric"));
mm.do_start();
int level = config_ps.get<int>("metric_level", 1); 
std::cout << "Enter metrics in <name> <value> <units> format. Ctrl-D to end" << std::endl; 
std::string name, unit; double value; 
while (std::cin >> name >> value >> unit) { 

mm.sendMetric(name, value, unit, level, artdaq::MetricMode::LastPoint);
} 
mm.do_stop(); 

} 


