The TPCs of ND280 T2K near detector

S.Bolognesi, A.Delbart (IRFU/CEA)

SAND Bi-weekly meeting (26 November 2019)

IRFU (CEA)

- French CEA laboratory including 6 Departements: Particle Physics, Nuclear Physics, Astrophysics, Electronics&Detectors, Systems Engeneering, Accelarators Magnet&Cryo Systems
- Large and sophisticated facilities for development and production of detectors and electronics: IRFU invented the MicroMegas technology (1996, Y. Giomataris, G. Charpak, Ph. Rebourgeard, J-P Robert)
- Involved in T2K since the beginning of the experiment: development, building and maintenance of the Near Detector (ND280) TPCs deep expertise in ND physics
- DUNE:

heavily involved in the **Double Phase technology (WA105)**: charge readout system (LEM) Interest in participating to **PIP2**

The role of TPCs in ND280

Momentum reconstruction:

Spatial Resolution ~10% (\rightarrow @0.2T space point resolution ~0.7mm: pads of 7x10 mm2) beyond 10%, limited by Fermi momentum smearing \rightarrow better resolution achievable with resistive MicroMegas / pad size, depending on the improved understanding of vN cross-section model

Momentum scale ~2% \rightarrow direct impact on mean flux energy $\rightarrow \Delta m_{32}^2$

Particle identification through dE/dx:

Energy resolution ~10% (~45% more ionization for electrons than muon/pions)

Dedicated gas: Ar+2%iC₄H₁₀+3%CF₄ Non-flammable, low transverse diffusion, very large v_{drift} (7.5 cm/us), minimize effect of impurities (30m attenuation lenght)

Dirft E field 200 V/cm

Field cage: electric distorsion < 0.2mm and minimal amount of material (G10/rohacell)

Cathode in the middle and 12

2 incapsulated boxes $(CO_2) \rightarrow 3.3\%$ rad lenght

MicroMegas at each anode (9m²) Figure 2: Inner box on the granite table in the TRIUMF clean room. A: one of inner box walls; B: module frame stiffening plate; C: module frame; D: inner box endplate; E: field-reducing corners; F: central cathode location.

Figure 3: Outer box with the different components labeled. A: one of the outer box walls; B: service spacer; C: one of the micromegas modules inserted into the module frame.

4

Calibration systems: - gas monitoring chambers (O₂<10ppm, H₂O<100ppm, CO₂<100ppm)

- photo-electron calibration with laser

The TPC design

Micromegas & electronics

A success story

Final percentage of good modules/produced: Micromegas (82/89) 92% FEC (499/514) 97% FEM (84/93) 90%

12 **dead MM channels** over 124272 channels (0.01%)

10 years of operation with only 1 FEM failure and 2HV filters to repair

08-09

85

84

75

The Micromegas performances

- Micromegas gain~1500 with spark rate <0.1/h and 2% uniformity
- Energy resolution 8-9% with uniformity better than 8% (3% between detectors)

Astonishing stability/reliability in 10 years

Mean dE/dx from cosmics

ND280 upgrade

difection Curvature BO ND280 upgrade HA-TPC SFED HA-TPC HA-TPC V-TPC1 V-TPC2 V-TPC3

+ 6 TOF planes surrounding the new tracker

HA track

HA-TPC V-TPC Parameter Value $0.85 \times 2.2 \times$ Overall $x \times y \times z$ (m) $2.0 \times 0.8 \times 1.8$ 1.8 Drift distance (cm) 90 Magnetic Field (T) 0.2 275 Electric field (V/cm) Gas Ar-CF4-iC4H10 (%) 95-3-2 Drift Velocity cm/µs 7.8 Transverse diffusion $(\mu m / \sqrt{cm})$ 265 Micromegas gain 1000 Micromegas dim. z×y (mm) 340x420 340x360 Pad $z \times y$ (mm) 10×11 7x10 124272 N pads 36864 el. noise (ENC) 800 S/N 100 Sampling frequency (MHz) 25 N time samples 511

High Angle TPCs to recover

same acceptance as at SK

Resistive Micromegas

Spread the charge from the avalanche over multiple pads \rightarrow compute the charge 'barycenter' \rightarrow get good resolution with larger pads (less number of channels)

Heavily based on ILD R&D

Field cage

INFN

Padova-Bari

To keep $\Delta E/E \leq 10^{-4}$ confined at <1cm from FC walls, the TPC cage requirements are : Cathode flatness better than 0.1mm, Micromegas plane flatness better than 0.2 mm, Cathode/Anode planes parallel to within 0.2mm, Field Cage walls flatness better tham 0.3mm Voltage divider resistors matched within rms ~ 0.1%

Extensive tests on-going

- Cosmic test bench @ IRFU Saclay
- Test beam at CERN in 2018
- Test beam at DESY, with magnetic field, in 2019
- Test beam at DESY with field cage prototype planned in 2020
- Installation at ND280 in summer 2021

(arXiv:1907.07060):

CERN prototype performances (1)

14

(arXiv:1907.07060):

CERN prototype performances (2)

Even better results at DESY with final pad design ($10x11mm^2$) and improved RC ($500 \text{ k}\Omega/\text{square}$) (preliminary spatial resolution ~200um \rightarrow factor 3-4 better than present TPCs)

SAND TPCs

Resistivity and pad size can be adjusted to match the SAND needs, given the E_v , magnetic field and space available

• Important to have small B non-uniformities and small $B_{r_{\phi}}$ component, (in general less harsh requirements for TPC equipped with MPGD than drift chambers)

• Geometry:

3 rectangular TPCs with readout planes: $2 \times 2 \times (57 \times 141)$ cm²; $2 \times (300 \times 77)$ cm² ~ 8m²

 Using ~1*1.1 cm² pads and RC as ND280 upgrade (200 um point spacial resolution):
71K channels → few % resolution @ 3 GeV

Pad size and RC can be optimized to improve resolution vs # electronics channel for fwd/HA TPCs:

eg for 10% resolution ~20-30k channels should be enough 16

Cylindrical geometry

Keeping the same geometry/mass for 3DST-S Keeping the same overall envelope → cylindrical TPC

• field cage: easier to have uniform electric field

 ~40 cm thick (readout planes ~ 8m²): resolution~8% at 3 GeV with 1x1.1cm2 pads and same RC (~200um resolution)

 Full angular coverage: backward tracks with lower momentum and lower occupancy: can use larger pads → less channels

Empty spaces between TPCs and 3DST-S: can be filled with additional cubes or other materials → gain in target mass

Simulation studies to optimize the design and tests of dedicated MM modules with different pads sizes and different values of RC 17

Conclusions

- TPCs are a robust detector with good performances which have proven to be a crucial ingredient in T2K physics
 - **Great experience** on building/installing/maintining it at IRFU (and in ND280 community in general)
 - Very smooth production and 10 years of running have shown the astonishing stability and reliability of such detector
 - On-shelf **TPC dedicated electronics** already developed
- The resistive Micromegas allows to tune the resolution vs number of channels by playing on RC and pad size to adapt the design to DUNE/SAND needs
- A cylindrical geometry may be more adapted to KLOE magnet: more easy to build/operate, larger acceptance, may allow to increase the 3DST-S mass

Back-up

Main concepts

- AFTER chip designed for T2K (511 bucket SCA sampling@25 MHz, 120fC-600 fC, 100ns-2µs peaking time)
- New FEC with 8 AFTER chips which digitizes pad signal with an 8 ch. ADC (minimum dead time of 3.3 ms)
- FEM provides control (&trigger), synchronization, data aggregation, data buffering & data zero suppression
- The TDCM is a generic clock and trigger distributor and data aggregator (FPGA+2 xilinx CPU+1 GB DDR3)