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HEP technology  
for science

AI capabilities and  
focus areas

Build at the 
intersection of unique 
HEP technologies and 

AI capabilities



Fermilab & HEP in the AI ecosystem
• Exciting applications in fundamental particle physics

• a few examples:
• Neutrino applications in NOνA
• Higgs @ CMS 
• CMB @ SPT

• Intersection of HEP & AI technology provides opportunities for innovation!
• Processing and simulating massive datasets
• Requirements for real science (uncertainty quantification, models with embedded physics,…)
• Large, integrated operations and data management
• Real-time, edge/sensor systems
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Driven by the experimental 
collaborations
Fermilab scientists involved in 
research are driving the 
highlighted applications  

Fermilab developing AI 
technologies for HEP and beyond



Outline
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Fermilab & HEP in the AI Ecosystem
scientific applications

AI capabilities and focus areas
capabilities developed for HEP

Who are we? 
Building a community



Example: NOνA Reconstruction
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A. Himmel, E. Niner, F. Pshihas et al. 
https://arxiv.org/abs/1604.01444 

1st deployed in oscillation analysis 
https://arxiv.org/abs/1703.03328  

Performance improvement 
equivalent to 4.2 kilotons 

of additional detector 
mass with traditional 
particle identification 

algorithms.

https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1703.03328


Example: Identifying the Higgs
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• Convolutional layers: used in image recognition, … 

• Recurrent layers: used in language translation, …   

• Reduced set of kinematic inputs to mitigate mass sculpting
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• Large performance gain over BDT

DP-2018/033

2x efficiency gain over 
shallow ML techniques!

J. Duarte et al.,  CMS DP-2018/046
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DeepDoubleBvL

94X – Mass Independence

31 October 2018 13

• Trade-off for performance more 
believable than in DPS

• Requires some judgement about 
where to pick the optimal point

D E E P  D O U B L E - B  TA G G E R
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• Dedicated “penalty term” based on Kullback-Leibler 
divergence mitigates mass sculpting
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2x efficiency gain over 
shallow ML techniques!

decorrelation: 
teach the network how 
to not learn certain 
physical features; 
important for controlling 
systematic uncertainties

J. Duarte et al.,  CMS DP-2018/046



Read between the layers: decompose microwave maps

�7

Observed (Q, U) Reconstructed (E, κ)

• Noise and other foregrounds obfuscate primordial GW signatures

• Pioneered use of Residual UNets to separate lensing signals (κ) from 

CMB polarization map (E)

• South Pole Telescope (SPT): 
Polarized cosmic microwave 
background maps


• Earliest gravitational wave 
signatures that have very low 
signal


• Applicable for CMB-S4 next 
generation experiments

J. Caldeira, B. Nord, et al., https://arxiv.org/abs/1810.01483

https://arxiv.org/abs/1810.01483
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Fermilab & HEP in the AI Ecosystem
scientific applications

AI capabilities and focus areas
capabilities developed for HEP

Who are we? 
Building a community



Fermilab AI Capabilities
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Computing hardware  
and infrastructure

Real-time AI  
at sensor/edge

Theory and  
new algorithms

Operations and  
control systems

Accelerate Discovery  
Science



Fermilab AI Capabilities
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Computing hardware  
and infrastructure

Real-time AI  
at sensor/edge

Theory and  
new algorithms

Operations and  
control systems

Accelerate Discovery  
Science

LEARNING ON GRAPHS

PHASE-SPACE INTEGRATION

COPROCESSORS FOR FAST INFERENCE

ASIC CODESIGN

hls4ml

SELF-DRIVING TELESCOPES

FAST ACCELERATOR CONTROL

UNCERTAINTY QUANTIFICATION

DISTRIBUTED TRAINING



Beyond images
Sparse, multi-modal, high-dimensional
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v = {x,y,z,E,t,id,δ,…}→
Theory and  

new algorithms

https://arxiv.org/pdf/1612.05824.pdf

https://arxiv.org/pdf/1612.05824.pdf


Beyond images
• Multiple activities into learning new representations of detector data for 

different physics applications
• Explore neural network architectures based on point clouds and graphs; n-

dimensional inputs in non-Euclidean space
• Promising first results for multiple applications

• Learn the strength of connections (edges) between nodes
• Charged particle tracking [1] 
• Calorimetry for irregular geometries [2]

�12 [1] https://arxiv.org/abs/1810.06111 , [2] https://arxiv.org/abs/1902.07987

Theory and  
new algorithms

https://arxiv.org/abs/1810.06111
https://arxiv.org/abs/1902.07987


Beyond images

�13

HNH2
Encoder Graph 

Module
…Graph 

Module
Graph 

Module
Output 
ModuleH0 H1

Figure 1: The Graph Neural Network architecture used for tracking.

the particle type of the edge can also be encoded and inferred. This can be achieved with a graph
neural network using architectures similar to those demonstrated for tracking as well as networks
where the graph is determined dynamically [14]. Here we will focus on the static graph networks and
demonstrate results for future calorimeters in particle physics experiments [8].

In particular, we have studied the application of message passing networks to the task of calorimeter
clustering, yielding initial promising results. The calorimeter clustering problem is very similar to the
tracking problem except that there may be more than two true edges connected to an input node. We
cast the task of calorimeter clustering as an operation on an initial static graph generated with a simple
algorithm like k-Nearest-Neighbours (kNN), passing messages to generate features for classifying
those edges as true or false. Here we are using kNN as stand-in for a lightweight reconstruction
algorithm as a first pass to generate a graph on the data. The parameter k was chosen such that there
was at least one true edge between all hits in the same truth-level cluster after applying the algorithm.
Smaller k results in lower clustering efficiency, depending on the use of noise suppression k can be in
the range of 8-24. In particular, these networks use the ’EdgeConv’ operator defined in [18], and it
was found that concatenating the intermediate hidden states in the output stage improved the rate of
model convergence by about a factor of two compared to using no such shortcuts. A diagram of the
GNN architecture used for calorimeter clustering is shown in figure 2.
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Figure 2: The Graph Neural Network architecture used for calorimeter clustering.

3 Results

The tracking results are based on the TrackML challenge data [17] generated by the ACTS frame-
work [12]. This dataset simulates the very dense environment in the HL-LHC with 200 interactions
per bunch crossing on average.

The GNN is trained on an NVIDIA V100 GPU for about 2 epochs in about two hours, resulting in
the performance showed in figure 3. With a threshold of 0.5 on the GNN output, the edge efficiency,
defined as the ratio of the number of true edges passing the threshold over the number of total true
edges, reaches 95.9%, and the purity, defined as the ratio of the number of true edges passing the
threshold over the number of total edges passing the threshold, is 95.7%. Guided by the GNN outputs,
a simple algorithm is used to reconstruct track candidates. The algorithm makes iterative visits to all
hits from inside to outside and reconstructs a best track candidate for the hit in question. Each hit
is used only by one track so no ambiguity resolving is needed. This step is called “Connecting The
Dots” (CTD). Using the GNN and CTD together reconstructs about 95% of true tracks that can be
reconstructed in the graph across the transverse momentum range from 100 MeV to 5 GeV beyond
which lacks statistics.

Ongoing work in reconstructing tracks with GNNs includes extending the method to whole detector
data and improving the performance of the CTD post-processing algorithm to recover lost efficiency.

3

Theory and  
new algorithms

2.3 Building tracks

For a simple test of these models, we use them to extrapolate and build tracks in low-
occupancy events. We construct a track “seed” using the initial three hits of a true track,
then use the RNN models to make forward predictions and select the closest (or highest-
scoring) hit in the event on each successive layer. An example track which is correctly fully
reconstructed using the simple RNN hit predictor model is shown in figure 7. In this simpli-
fied scenario both models are very good at making predictions for selecting candidate hits.
The resulting hit selection accuracies measured are 99.93% and 99.98% for the simple and
Gaussian models, respectively.

For a proper assessment of these models, a full combinatorial tree search algorithm with
full occupancy collision data should be used. This is currently left for future work.

Figure 7. An example track properly reconstructed using the basic hit predictor model in an event.

3 Track finding with Graph Neural Networks

Another way to represent tracking data with points is as a graph of connected hits. This
is illustrated in figure 8. In this representation, we can apply a powerful class of methods
from Geometric Deep Learning [6] known as Graph Neural Networks (GNNs). The graph
can be constructed by connecting plausibly-related hits using geometric constraints or some
kind of pre-processing algorithm like the Hough Transform. A GNN model can learn on this
representation and solve tasks with predictions over the graph nodes, edges, or global state.

We have developed two applications using Graph Neural Networks. The first is a binary
hit classification model which learns to identify one track in a partially-labeled graph by
classifying the graph nodes. The second is a binary segment classification model which
learns to identify many tracks at once by classifying the graph edges (hit pairs). The inputs to
these models are the node features (the 3D hit coordinates) and the connectivity specification.

3.1 Graph neural network architecture

The architecture we have developed is similar to that of Interaction Networks [7] but is cus-
tomized for our purposes. Two main components operate locally on the graph:

Tracking

Figure 5: x and y projections of edge classification in a pion shower within the CMS HGCal. The
input graph is derived using kNN. The vertical axis in each case is the calorimeter layer number. A
score cut of 0.5 is used to identify true edges in this case and edges are labelled according to being
true positives (yellow), true negatives (blue), false positives (green), and false negatives (red).

for the HGCal. Finally, explorations into deploying these networks for Liquid Argon Time Projection
Chambers are in their initial stages.

4 Conclusion

We have demonstrated that Graph Neural Networks on Point Clouds are suitable for both tracking and
calorimetry in high energy physics, having promising physics performance and good scalability. For
the track finding problem, the GNNs combined with a simple connecting-the-dot algorithm results
in a relative efficiency of over 95% for all particles. Ongoing work is recovering the inefficiency
introduced by each selection. For the calorimeter clustering problem, we have found that very similar
graph network architectures yield promising solutions. In the individual clustering problems used
for testing so far we have found excellent energy collection efficiency, as well as efficiencies and
purities better than 90% even in the most difficult scenarios. The next step will be to connect the dots
as in the tracking algorithms and derive useful physics quantities from the collections of connected
calorimeter energy deposits.
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cast the task of calorimeter clustering as an operation on an initial static graph generated with a simple
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algorithm as a first pass to generate a graph on the data. The parameter k was chosen such that there
was at least one true edge between all hits in the same truth-level cluster after applying the algorithm.
Smaller k results in lower clustering efficiency, depending on the use of noise suppression k can be in
the range of 8-24. In particular, these networks use the ’EdgeConv’ operator defined in [18], and it
was found that concatenating the intermediate hidden states in the output stage improved the rate of
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3 Results

The tracking results are based on the TrackML challenge data [17] generated by the ACTS frame-
work [12]. This dataset simulates the very dense environment in the HL-LHC with 200 interactions
per bunch crossing on average.

The GNN is trained on an NVIDIA V100 GPU for about 2 epochs in about two hours, resulting in
the performance showed in figure 3. With a threshold of 0.5 on the GNN output, the edge efficiency,
defined as the ratio of the number of true edges passing the threshold over the number of total true
edges, reaches 95.9%, and the purity, defined as the ratio of the number of true edges passing the
threshold over the number of total edges passing the threshold, is 95.7%. Guided by the GNN outputs,
a simple algorithm is used to reconstruct track candidates. The algorithm makes iterative visits to all
hits from inside to outside and reconstructs a best track candidate for the hit in question. Each hit
is used only by one track so no ambiguity resolving is needed. This step is called “Connecting The
Dots” (CTD). Using the GNN and CTD together reconstructs about 95% of true tracks that can be
reconstructed in the graph across the transverse momentum range from 100 MeV to 5 GeV beyond
which lacks statistics.

Ongoing work in reconstructing tracks with GNNs includes extending the method to whole detector
data and improving the performance of the CTD post-processing algorithm to recover lost efficiency.

3

Clustering

HEPTrkX/ExaTrkX, LDRD L2019.017 (G. Cerati, L. Gray, J. Kowalkowski, K. Pedro, et al.)

https://heptrkx.github.io/
https://github.com/exatrkx
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Computing infrastructure and hardware
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HARDWARE ALTERNATIVES �11

FPGAs
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+
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FLEXIBILITY
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}
Advances in 

heterogeneous computing 
driven by


machine learning and big 
data explosion

Computing hardware  
and infrastructure



Visit microsoft story

Complex and massive datasets
• Big science requires both high-performance and high-throughput compute

• Translation: accelerated computing technologies for training and inference

• Example, proof-of-concept: CMS requires > 10x more compute for HL-LHC
• In collaboration with Microsoft and many university partners,  

FPGA acceleration of machine learning inference in the cloud and the edge 

�16

Computing hardware  
and infrastructure

N.T., J. Duarte, B. Holzman, S. Jindariani, M. Liu, K. Pedro, et. al [https://arxiv.org/abs/1904.08986]

https://customers.microsoft.com/en-us/story/724137-fermilab-led-team-tests-azure-ai-for-particle-physics-data-challenge
https://arxiv.org/abs/1904.08986


Complex and massive datasets
• Study found 30x (175x) speed-up for cloud (edge) inference of ResNet50 

over experimental software framework

�17

Non-disruptive integration 
into HEP computing model;


deploying as a service can be 
more cost-effective

Exploring various heterogeneous 
hardware and applications  

(LHC, neutrinos, cosmology)

Computing hardware  
and infrastructure

N.T., J. Duarte, B. Holzman, S. Jindariani, M. Liu, K. Pedro, et. al [https://arxiv.org/abs/1904.08986]

https://arxiv.org/abs/1904.08986


• Resource-constrained AI
• Low-latency, low-power, high bandwidth
• Cryogenics, high-radiation

Real-time AI at sensor/edge
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LHC at CERN 
40 MHz collision rate, ~20 hrs/day
Compact Muon Solenoid (CMS) 

→ > 1 billion channels


MACHINE LEARNING IN THE HARDWARE TRIGGER  1

Javier Duarte I hls4ml 6

CMS Trigger
High-Level 
TriggerL1 Trigger

1 kHz 
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline

Offl
ine

1 ns 1 us 1 s1 ms
Compute Latency

2 Building neural networks with hls4ml

In this section, we give an overview of translating a given neural network model into a FPGA
implementation using HLS. We then detail a specific jet substructure case study, but the same concepts
are applicable for a broad class of problems. We conclude this section by discussing how to create
an e�cient and optimal implementation of a neural network in terms of performance, resource usage,
and latency.

2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in Fig. 1.
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Figure 1: A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such as
Keras and PyTorch, involves a training step and possible compression steps (more discussion below
in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of hls4ml,
which translates a model into an HLS project that can be synthesized and implemented to run on an
FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second at a
relatively low power cost. However, such operations consume dedicated resources onboard the FPGA
and cannot be dynamically remapped while running. The challenge in creating an optimal FPGA
implementation is to balance FPGA resource usage with achieving the latency and throughput goals
of the target algorithm. Key metrics for an FPGA implementation include:

– 4 –

> 5000 parameter 
fully connected 

network in 100 ns!

~1 PB/DAY

~1 PB/S



Pushing intelligence upstream

�19



AI on chip
• hls4ml — open-source automated translation tool, ML models to firmware 
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2 Building neural networks with hls4ml

In this section, we give an overview of translating a given neural network model into a FPGA
implementation using HLS. We then detail a specific jet substructure case study, but the same concepts
are applicable for a broad class of problems. We conclude this section by discussing how to create
an e�cient and optimal implementation of a neural network in terms of performance, resource usage,
and latency.

2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in Fig. 1.

�����������
�����

���
��
���������!�
	"������

#

���������-���
�-��
����-�-����

�����	�-���-��

��
��
�������

��
��
��� ���-��

����������-���/�����

��������-��!
���
���-��

�����

���
���
��-�����
��-����
����!
���!��/���!

hls  4  ml

hls4ml

HLS  4  ML

Figure 1: A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such as
Keras and PyTorch, involves a training step and possible compression steps (more discussion below
in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of hls4ml,
which translates a model into an HLS project that can be synthesized and implemented to run on an
FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second at a
relatively low power cost. However, such operations consume dedicated resources onboard the FPGA
and cannot be dynamically remapped while running. The challenge in creating an optimal FPGA
implementation is to balance FPGA resource usage with achieving the latency and throughput goals
of the target algorithm. Key metrics for an FPGA implementation include:

– 4 –

https://fastmachinelearning.org/hls4ml

featured Xilinx case study!
N.T., J. Duarte, C. Herwig, B. Kreis, S. Jindariani, M. Liu, R. Rivera, et al [https://arxiv.org/abs/1804.06913]

https://fastmachinelearning.org/hls4ml
https://www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf
https://arxiv.org/abs/1804.06913


[https://arxiv.org/abs/1804.06913] 

• All FPGA design
• Flexible: many algorithm types for layers of processing

• Application and adoption growing across the LHC
• Firmware in hours instead of weeks/months

• Growing interest with many on-going developments
• CNNs, Graphs, RNNs, auto-encoders, binary/ternary
• Alternate HLS (Intel, Mentor, Cadence)
• Co-processors, multi-FPGA
• Intelligent ASICs
• Other physics domains and beyond!

Edge/sensor AI 
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Dense Network 
23 ➜ 30 ➜ 25 ➜ 20  

➜ momentum & classifier

Inference time: 280 ns 
Throughput: 104 Gb/s

AI circuit for ultrafast inference on FPGA

https://arxiv.org/abs/1804.06913
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Edge/sensor AI 
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https://arxiv.org/abs/1804.06913


Operations and control systems
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Challenge:  
aggregate data from 

thousands of sensors to 
steer protons on a light 

speed racetrack

Operations and  
control systems



Accelerator controls with reinforcement learning

• Goal to reduce proton beam 
losses in Booster Accelerator

• Develop reinforcement 
learning algorithm to deployed 
on FPGA board to control the 
magnet power supplies (GMPS) 
— deploy the hls4ml tool

• Single crate control system; 
project lays the foundation for a 
more ambitious future program.
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Operations and  
control systems



Outline
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Fermilab & HEP in the AI Ecosystem
scientific applications

AI capabilities and focus areas
capabilities developed for HEP

Who are we? 
Building a community



The AI initiative
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Scientific 
Computing Division

Cross-cutting 
projects and initiatives

AI 
Project

Lab-wide initiative
Formal home in SCD, 
but engaging the entire laboratory

ai.fnal.gov



The AI initiative
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AI Project
Project office

Primary for strategy and day-to-day 
operations

Nhan Tran (coordinator), Farah Fahim, 
Burt Holzman, Brian Nord, Gabe 

Perdue

ex-officio: Daniel Elvira (AISP), Charles 
Thangaraj (IARC)

Cosmic

Intensity/ν

Energy

SCD/Infra.

QuantumTech Division

Acc. Division

WDRS/FESS/…

IARC

Users/UEC

Detectors

Theory

Communications

Liaisons: link across the laboratory

communicate interests and needs of focus area to AI project and focus area participants 


providing input to overall AI project strategy 
organize materials, inputs for AI-related funding calls and communications.  



Community building

• Mid-to-long term: build the community and focus on workforce development

• Seminars, tutorials, hackathons
• Planning for an AI Jamboree in February (coinciding with engineering week);  

chance for cross-pollination fo experts and enthusiasts across lab, “idea incubators”

• Engage broader AI & HEP community
• Local example: UC/ANL/FNAL joint computational seminar 

https://indico.fnal.gov/event/22307/
• Existing and growing collaborations with laboratories, universities, industry

• many of today’s examples are multi-institutional 
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https://indico.fnal.gov/event/22307/


Outlook
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Fermilab & HEP in  
the AI Ecosystem

AI capabilities and  
focus areas


