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Strategy

Al capabilities and

focus areas

HEP technology
for science

Build at the
intersection of unique
HEP technologies and

Al capabilities
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2= Fermilab

Fermilab & HEP In the Al ecosystem

* Exciting applications in fundamental particle physics

e g few examples: Driven by the experimental

collaborations

* Neutrino applications in NOVA Fermilab scientists involved in

o Higgs @ CMS research are driving the
highlighted applications

- CMB @ SPT

* Intersection of HEP & Al technology provides opportunities for innovation!
* Processing and simulating massive datasets
* Requirements for real science (uncertainty quantification, models with embedded physics,...)
* Large, integrated operations and data management
* Real-time, edge/sensor systems

Fermilab developing Al
technologies for HEP and beyond
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Outline

Fermilab & HEP in the Al Ecosystem
scientific applications

Al capabilities and focus areas

capabilities developed for HEP

Who are we?
Building a community




Example: NOvA Reconstruction

Single particles are separated
using geometric reconstruction  pyong:
methods. Side view
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Classify particles using full
event topology from both views
as well as reconstructed cluster
information (4 views)
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Top view
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. Himmel, E. Niner, F. Pshihas et al.

https://arxiv.org/abs/1604.01444

1st deployed in oscillation analysis
https://arxiv.org/abs/1703.03328

Performance improvement
equivalent to 4.2 kilotons
of additional detector

mass with traditional
particle identification
algorithms.



https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1703.03328
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Example: Identifying the Higgs

ConviD CMS simuiation Preliminary 2016 (13 TeV)
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connected @) - double-b, AUC = 91.3% B
H(bb) , 3%
seconaary -, ConviD | GRU ) Hico) £ | ]
vertex —— | Poes |=| couns | T | (o S
’ — units, +— u u =
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6 J. Duarte et al., CMS DP-2018/046



Example: Identifying the Higgs
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J. Duarte et al., CMS DP-2018/046
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2016 (13 TeV)

300 < jet ptr < 2000 GeV

40 < jet mgp < 200 GeV
——— DeepDoubleBvL, AUC = 97.3%

double-b, AUC =91.3%

2x efficiency gain over
shallow ML techniques! E
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Read between the layers: decompose microwave maps

Observed (Q, U) Reconstructed (E, )
' < v 1 il & o & R Iﬂ;
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50 | e & ol ; '-.-j '1 -5 20 _ |.-‘ "-n B :1 |
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* South Pole Telescope (SPT): OSSR Sl prsaieTpn R Al
Polarized cosmic microwave "IN RN | Tl st ien s |,
background maps o A megavy [ ipasr et B
» Earliest gravitational wave RS R At ' I TR [
signatures that have very low L o ) ; e Ty
signal
* Applicable for CMB-S4 next * Noise and other foregrounds obfuscate primordial GW signatures
generation experiments * Pioneered use of Residual UNets to separate lensing signals (k) from

CMB polarization map (E)

7 J. Caldeira, B. Nord, et al., https://arxiv.org/abs/1810.01483


https://arxiv.org/abs/1810.01483
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Fermilab & HEP in the Al Ecosystem
scientific applications

Al capabilities and focus areas

capabilities developed for HEP
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Fermilab Al Capabilities

Theory and Computing hardware
new algorithms and infrastructure

Accelerate Discovery
Science

Operations and Real-time Al

control systems at sensor/edge
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Fermilab Al Capabilities

UNCERTAINTY QUANTIFICATION COPROCESSORS FOR FAST INFERENCE

LEARNING ON GRAPHS

Theory and Computing hardware

new algorithms and infrastructure

PHASE-SPACE INTEGRATION DISTRIBUTED TRAINING

Accelerate Discovery his4ml

Science

ASIC CODESIGN

Operations and FAST ACCELERATOR CONTROL Real-time Al

control systems at sensor/edge

SELF-DRIVING TELESCOPES

10
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Beyond images | ik
Sparse, multi-modal, high-dimensional

X=25m

uB@Z

{ Drift Time = X position A

Compact Muon Solencid

A

ur €°¢

Three
Wire Planes

Scintillation Light
; detected by PMTs
Charge collected
by wire plane
Cathode @ 70 kV Electric Field Anode . ,
(plate) 270 V/em (wire plane) https://arxiv.org/pdf/1612.05824.pdf

11


https://arxiv.org/pdf/1612.05824.pdf
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Beyond images
* Multiple activities into learning new representations of detector data for
different physics applications

* Explore neural network architectures based on point clouds and graphs; n-
dimensional inputs in non-Euclidean space

* Promising first results for multiple applications
* Learn the strength of connections (edges) between nodes
» Charged particle tracking [1]
* Calorimetry for irregular geometries [2]

12 [1] https://arxiv.org/abs/1810.06111, [2] https://arxiv.org/abs/1902.07987


https://arxiv.org/abs/1810.06111
https://arxiv.org/abs/1902.07987

Beyond images

13

¢ [rad]

Tracking

)
eo o ® °
o
264 eo®© ° °
oo 4 ° o
'YX R o °
2.4 - o ¢
o
.':. . +
2.2 - ° + +
4
2.0 A
et T,
.
AR SR
1.8 + e
jase ¢ °
e
1.6 -
OjO 0j2 0j4 0.I6 0j8 er
r[m]

0.6 - ° | -
: o
0.5 - o . ¢ +
Y .
1 o §$ 4 o
0.4 s : s
® °
¢ . +
N o o
_ 0.3 8 X s o
£ o +
~ o s .
021 o8° 0 ° ] i ¢
o0 R o
HRR :
0.1 7 [ J ' ‘ o
o _‘_ 8
o9 [
001 ae® 8 ’ o o
‘ e o ° data labels
° .
o o
_0.1- . o ° selected hits
0.0 0.2 0.4 0.6 0.8 1.0
r[m]

401

layer [arb]

10

2= Fermilab

Theory and

new algorithms

. Clustering
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7 False noise (E = 1.60)
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HEPTrkX/ExaTrkX, LDRD L2019.017 (G. Cerati, L. Gray, J. Kowalkowski, K. Pedro, et al.)
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https://heptrkx.github.io/
https://github.com/exatrkx
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Big datasets

LHC Science Facebook

data uploads SKA Phase 1 —
~200 PB 180 PB 2023
~300 PB/year
Google science data

searches
98 PB

LHC — 2016
50 PB raw data

Google
Internet archive Yearly data volumes

~15 EB
HL-LHC — 2026

~600 PB Raw data

SKA Phase 2 — mid-2020’s HL-LHC — 2026
~1 EB science data ~1 EB Physics data

14
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Big datasets

42 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread

Performance
(SpecINT x 103)
Google
Internet Frequency (MHz)

Typical Power
(Watts)

Number of
Logical Cores

S0 4 AN 2HNE MNP ¢

1970 1980 1990 2000 2010 2020
Year

Original data up 10 the year 2010 collected and plotted by M. Horowitz, F. Labonte, O, Shacham, K, Olukotun, L. Hammond, and C, Batten
New plot and data collected for 2010-2017 by K. Rupp

14 A
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Computing infrastructure and hardware

ASICs Advances in
NENRE heterogeneous computing
driven by
machine learning and big
data explosion

& XILINX

NVIDIA ) ' PCIZ>

GPU CLOUD EXPRESS’
e\ \ (o

Gen 4

BIONIC

15
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Complex and massive datasets

* Big science requires both high-performance and high-throughput compute
* Translation: accelerated computing technologies for training and inference

* Example, proof-of-concept: CMS requires > 10x more compute for HL-LHC

* |n collaboration with Microsoft and many university partners,
FPGA acceleration of machine learning inference in the cloud and the edge

Fermilab-led team tests Azure Al

for particle physics data challenge =~ — —""7>"7,

m: Microsoft - T

Visit microsoft story

16 N.T., J. Duarte, B. Holzman, S. Jindariani, M. Liu, K. Pedro, et. al [https://arxiv.org/abs/1904.08986]


https://customers.microsoft.com/en-us/story/724137-fermilab-led-team-tests-azure-ai-for-particle-physics-data-challenge
https://arxiv.org/abs/1904.08986

af Fermilab
Complex and massive datasets

» Study found 30x (175x) speed-up for cloud (edge) inference of ResNet50
over experimental software framework

(

Worker Node }

JetlmageProducer | T~ =F| Non-disruptive integration
.

S ey Brainwave Service into H_EP CompUtin_Q model;
EEEE deploying as a service can be
------- : more cost-effective

HLLLLLL Exploring various heterogeneous

-------- hardware and applications
s (LHC, neutrinos, cosmology)

" Worker Node
 JetlmageProducer

Worker Node
 JetlmageProducer

Azure Cloud Datacenter @ VA
or
On-premesis

CMS datacenter @ FNAL

17 N.T., J. Duarte, B. Holzman, S. Jindariani, M. Liu, K. Pedro, et. al [https://arxiv.org/abs/1904.08986]


https://arxiv.org/abs/1904.08986

Real-time Al at sensor/edge 7

 Resource-constrained Al

A

* Low-latency, low-power, high bandwidth

» Cryogenics, high-radiation

18

~1 PB/S

LHC at CERN
40 MHz collision rate, ~20 hrs/day

Compact Muon Solenoid (CMS)
— > 1 billion channels

1 kHz
1 MB/evt

(

2% Fermilab
)

Real-time Al
at sensor/edge
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The Things

Wearables e Mobile Devices
cars e Meters
Motors e Roboftics

Buildings e Generators

DATA GENERATION

THE EDGE
Data
Sensors & .
Aggregation Edge IT
Actuators
& Gateways

o

DATA SENSING DATA COLLECTION
AGGREGATION

Pushing intelligence upstream

-

=

EARLY DATA
ANALYTICS

2= Fermilab

Data Center &
Cloud IT

DEEP DATA
ANALYTICS
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a )
Al on chip vt me

- _J

* hlsdml — open-source automated translation tool, ML models to firmware

https://fastmachinelearning.org/hls4ml

Keras

TensorFlow
PyTorch

/ \ Co -processing kernel
- hls 4 ml

model
compressed
model o HLS.
conversion Custom flrmware
: : de5| n
Usual machine learning — ) 7 g
software workflow

- - ) v
tune conﬁgurahon i‘ XI I_I NX
precision

reuse/pipeline ALL PROGRAMMABLE.

featured Xilinx case study!

20 N.T., J. Duarte, C. Herwig, B. Kreis, S. Jindariani, M. Liu, R. Rivera, et al [https://arxiv.org/abs/1804.06913]


https://fastmachinelearning.org/hls4ml
https://www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf
https://arxiv.org/abs/1804.06913
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Real-time Al

Edge/sensor Al | s

L p Al circuit for ultrafast inference on FPGA

[https://arxiv.org/abs/1804.06913]

* All FPGA design
* Flexible: many algorithm types for layers of processing

* Application and adoption growing across the LHC
* Firmware in hours instead of weeks/months

* Growing interest with many on-going developments
* CNNs, Graphs, RNNs, auto-encoders, binary/ternary
* Alternate HLS (Intel, Mentor, Cadence)
* Co-processors, multi-FPGA

== Inference time: 280 ns
eigent A -

» Other physics domains and beyond! e ok

-> & classifier

_l


https://arxiv.org/abs/1804.06913

Edge/sensor Al

~

—

Real-time Al
at sensor/edge

~

W,

[https://arxiv.org/abs/1804.069135]

* All FPGA design

* Flexible: many algorithm types for layers of processing

* Application and adoption growing across the LHC
* Firmware in hours instead of weeks/months

* Growing interest with many on-going developments
* CNNs, Graphs, RNNs, auto-encoders, binary/ternary
* Alternate HLS (Intel, Mentor, Cadence)

* Co-processors, multi-FPGA

* Intelligent ASICs

* Other physics domains and beyond!

Q&
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Fast Machine Learning

September 10-13, 2019 at Fermilab

Accelerating ML in science:

Ultrafast on-detector inference
and real-time systems

cceleration as-a-service

Hardware platforms

Coprocessor technologies
(CPU/GPU/TPU/FPGAS)

" hls 4 ml



https://arxiv.org/abs/1804.06913
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Operations and control systems

R m—— Challenge: R
" aggregate data from

= thousands of sensors to

steer protons on a light

speed racetrack j

‘AR B

23
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Accelerator controls with reinforcement learning
* Goal to reduce proton beam o
losses In Booster Accelerator l

Agent
» Develop reinforcement S N
learning algorithm to deployed e e

on FPGA board to control the

magnet power supplies (GMPS)
— deploy the hls4ml tool

l Action
» Single crate control system;
project lays the foundation for a E e

(experimental

more ambitious future program. 2ppartus)

Train surrogate

model

24



Outline
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Fermilab & HEP in the Al Ecosystem
scientific applications

Al capabilities and focus areas

capabilities developed for HEP

Who are we?
Building a community

2= Fermilab



The Al initiative

26

Scientific
Computing Division

f Cross-cutting
projects and initiatives

2= Fermilab

Lab-wide initiative
Formal home in SCD,
but engaging the entire laboratory

Artificial Intelligence

Artificial intelligence has the potential to be a transformative technology that benefits nearly all
aspects of society. At Fermilab, we are committed to artificial intelligence research and development
investments in order to enhance the scientific mission of particle physics.

The unique challenges at the heart of high-energy physics research present opportunities for
advancing artificial intelligence technologies. From massive and rich data sets to building and
operating some of the world’s most complex detector and accelerator systems, the technologies we
are developing have potential connections to a broad domain of cutting-edge Al research.

Fermilab’s Artificial Intelligence Project aims to
= Accelerate science with the goal of solving the mysteries of matter, energy, space and time
= Develop Al capabilities within the national ecosystem that build on high-energy physics challenges

and technologies
= Build community around cross-cutting problems in order to share the work of Fermilab and the high-energy physics community’s
Al work with the world

Project team
= Farah Fahim
= Burt Holzman
= Brian Nord
= Gabriel Perdue
= Nhan Tran, project lead
= Domain Al experts who serve as liaisons from across Fermilab

Email the project team ai. fnal. gOV
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The Al initiative

operations

Nhan Tran (coordinator), Farah Fahim, WDRS/FESS/...

Burt Holzman, Brian Nord, Gabe

ex-officio: Daniel Elvira (AISP), Charles

Liaisons: link across the laboratory
communicate interests and needs of focus area to Al project and focus area participants
providing input to overall Al project strategy
organize materials, inputs for Al-related funding calls and communications.

27
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Community building

* Mid-to-long term: build the community and focus on workforce development

 Seminars, tutorials, hackathons

* Planning for an Al Jamboree in February (coinciding with engineering week);
chance for cross-pollination fo experts and enthusiasts across lab, “idea incubators”

* Engage broader Al & HEP community

» Local example: UC/ANL/FNAL joint computational seminar
https://indico.fnal.gov/event/22307/

* Existing and growing collaborations with laboratories, universities, industry
* many of today’s examples are multi-institutional

28


https://indico.fnal.gov/event/22307/

Outlook

Al capabilities and

focus areas
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Fermilab & HEP in
the Al Ecosystem

Accelerate Discovery
Science

Real-time Al
at sensor/edge

2= Fermilab



