Report on the Hyper-Kamiokande experiment

Masato SHIOZAWA The University of Tokyo

FNAL PAC meeting 15 January, 2020

HYPER-KAMIOKANDE:

High power proton beams
J-PARC
(hosted by KEK)

Hyper-Kamiokande

(hosted by the University of Tokyo)

	Super-K	Hyper-K
Site (overburden)	Mozumi, 1,000m	Tochibora, 650m
Number of ID PMTs	11,129	40,000
Photo-coverage	40%	40% (x2 sensitivity)
Total / Fiducial Mass	50 / 22.5 kton	260 / 187 kton

1. Hyper-K detector to be built with **8.4 times larger fiducial mass** (190 kiloton) than Super-K and to be instrumented with **double-sensitivity PMTs**.

~0.6GeV neutrinos

- 2. J-PARC neutrino beam to be upgraded from 0.5 to 1.3 Mega Watt
- 3. New and upgraded near detectors to control systematic errors

PHYSICS MOTIVATIONS:

- We want to understand an unified organizing principle for mass/mixing of "quarks & leptons." Big question is Grand Unified Theory.
- Future higher precision data would bring further insights.

E. Lisi

PHYSICS MOTIVATIONS(2):

- Proton decay observation would prove the Grand Unification of elementally particles.
- Future measurements would reveal details of unification picture, e.g. unification scale and gauge group.

SCIENTIFIC GOALS:

- By sending neutrino and anti-neutrino beams from J-PARC to Hyper-Kamiokande, the difference, if any, between the oscillation nature of those two (CP violation) can be measured.
- Prove the grand unification of three forces by discovering the proton decays.
- Precision measurements of neutrino oscillation phenomena through the observation of solar and atmospheric neutrinos.
- Reveal the mechanism of the supernova explosion by observing large number of neutrinos emitted from them.
- Reveal the history of supernova explosions by observing remnant of neutrinos from supernova explosions that occurred during the history of the evolution of the Universe.
- Others

DISCOVERY POTENTIAL:

- CP violation discovery and measurement, mass hierarchy determination, and so on.
- Neutrino astronomy
- Proton decay discovery

6

FUNDING STATUS:

- On December 13 2019, the Japanese Cabinet has proposed the supplementary budget for FY2019 which includes the construction of Hyper-K.
- We have currently started its construction phase. Experiment will start in 2027.
- → We would like to work together with international partners and contribute to the world-wide effort to strong particle physics and astronomy program.

Road sign for HK power distribution

FUNDING STATUS (DETAILS):

Supplementary budget for FY2019 and General budget for FY2020 (Proposed by Japanese cabinet)

- Supplementary budget for FY2019 3.5 BJPY (coming from later year's schedule)
 - * HK detector 3.129 BJPY
 - * J-PARC upgrade 0.371 BJPY
- General budget for FY2020 0.3 BJPY (requested 1.81 BJPY)
 * HK detector 0.3 BJPY

[Overall Plan]

- 1.HK detector about 64.9 BJPY (Japan's share: 50.2 BJPY) [until FY2026]
- 2.J-PARC upgrade about 7.3 BJPY (Japan's share: 4.3 BJPY) [until FY2026]
- * Japan's share includes 20 BJPY by the implementing institute.

ORGANIZATION:

Hyper-K meeting@Kashiwa, September 2019

- 2 host institutes; Univ. of Tokyo and KEK
- Proto-collaboration; 340 members from 17 countries
- Both organizations are in transition to construction phase

SCHEDULE:

- We are here; January 2020.
- Aiming at operation start in 2027.

READY TO START CONSTRUCTION:

 Large cavern excavation is found to be feasible with various geological survey data, discussions with the engineering experts etc.

New 50cm PMTs were developed which has double photon-efficiency of that of Super-K. Protection cover has been tested and confirmed under 80m depth water.

SITE OVERVIEW:

• 8km south of Super-K, 295km from J-PARC, 650m rock overburden

CONSTRUCTION 2020:

- Geological survey for detailed cavern design
 - 1 year for borehole coring, in-situ rock stress, in-situ rock property meas. etc.
- Access tunnel
 - Detailed designing
- Entrance yard
 - Yard leveling, power distribution, water supply, waste water treatment facility

14

New 50cmφ PMT

- 136 HK-PMTs in Super-K in 2018
- Direct comparison w/ SK-PMTs
- long-term test will be performed in real WC detector

Long-term dark rate monitoring

R&D to further reduce dark rate with the target of 4 kHz

INTERNATIONAL CONTRIBUTION:

Ongoing discussions to decide international contributions.

PMT cover

MCP-PMT

multi-PMT module

Outer Detector

Front-end electronics system of Hyper-Kamiokande

Water-tight pressure tolerant case, feed-through and connectors.

Many technical challenges

- Mechanical design (pressure tolerance)
- Water tightness
- Low radioactive background

Front-end module contains

- high voltage power supply (for PMT),
- digitizers (QTC/ADC + TDC or FADC),
- system controllers,
- communication modules (optical interfaces etc.),
- timing (synchronization) system with GPS, and all the components need to be robust and durable.

Ultrapure water system

- In early stage of Super-K, 50kt of water had been processed at the rate of 30t/hour. Later the process rate was increased at the rate of 60t/hour to achieve better water quality.
- Scaling these numbers up for the 258kt of water the Hyper-K tank, for the initial stage a water circulation of at least 155t/hour is indispensable. This minimum 155t/hour will be prepared by Japan, but International contributions is anticipated to get 310t/hour flow.

Fresh air system

- The flow rate of the fresh air into the Super-K dome area is 100m³/mir This keeps the radon level below 148Bg/m³, the US health limit.
- A similar fresh air system will be necessary for Hyper-K, but with a larger flow rate scaled for the larger volume of the dome.
- The fresh air system for Hyper-K is expected to be built with an international contribution as it was built for Super-K.

Radon concentration in Super-K dome

Near/Intermediate detectors

Critical components to precisely understand J-PARC beam and neutrino interactions.

On-axis Detector (INGRID)

 $\pm 5m$ $\pm 5m$

Off-axis Magnetized **Tracker**

(ND280→ND280 Upgrade for HK)

Off-axis spanning intermediate water Cherenkov detector

IWCDの概念図

- On-axis detector: Measure beam direction and event rate
- •Off-axis magnetized tracker: Measure primary (anti)neutrino interaction rates, spectrum and properties. Charge separation to measure wrong-sign background
- •Intermediate WC detector: H₂O(Gd) target with off-axis angle spanning orientation

Connection to FNAL and CERN: Beam test of prototype detectors, Hadron production measurements for precision determination of J-PARC neutrino flux, etc.

20

J-PARC upgrade

Power upgrade from ~0.5 to 1.3 MW

1st priority among projects which require new funding requests in KEK Project Implementation Plan (KEK-PIP)

Beam Power (kW)	485 (Achieved)	(940)	1,300 (Goal for T2K-II)	
#p/p(10 ¹²)	250	250	310	
Rep T (s)	2.48	1.28	1.16	
Funding slaned 10%				

- MR magnet power supply upgrade
- MR RF upgrade (High grad/PS)
- MR Fast Extraction Kicker upgrade
- Higher #p/p
 - MR RF upgrade (PS)

Long-Standing KEK-Fermilab Cooperation for Neutrino Beam

Good relationship between KEK and Fermilab experts since 1999

- Detailed discussions and information exchange in Neutrino Beam and Instrumentation (NBI) workshop series
 - Many lessons learned from other facilities

KEK/J-PARC and Fermilab share the challenges for high power neutrino beam (toward J-PARC 1.3 MW upgrade / LBNF)

- Precise and reliable beam operation
 - Reduction of beam loss / robustness of beam monitors
- Overcome high-power target facility issues
 - Handling of radioactive waste (e.g., Tritium etc.)

US-Japan Cooperative Programs in High Energy Physics

- Accelerator and beamline R&D for high power neutrino beam since 2014
 - KEK-Fermilab collaboration in accelerator and neutrino beamline development
 - Beam dynamics study for beam loss reduction
 - Beam monitor development (Gated-IPM/WSEM)
 - Laser manipulation of H- beam
 - High-power target facility issues
- LBNF-specific program launched since 2018
 - KEK-Fermilab collaboration for LBNF (next page)

Joint beam study at J-PARC MR

Joint Tune-shift measurements at Fermilab

Photo of IPM

KEK-Fermilab Cooperation for LBNF

KEK Neutrino group started R&D activities for LNBF neutrino beamline since 2018

- KEK and Fermilab has common R&D items for facility upgrade/construction
- LBNF adopts similar beamline configuration to J-PARC, so KEK's expertise can help for the design
- Fruitful discussions through remote (monthly) and face-to-face (twice/year) meetings

Cooperation items

- Hermetic structure of Hatch cover of N₂ vessel
- Hermetic structure of stripline feedthrough for magnetic horns
- He circulation system for target cooling
- H₂ removal system for magnetic horn water cooling
- Muon monitor development (Electron multiplier tube: EMT)
- Tritium issues (fundamental measurements on Tritium production and release)

Hatch Cover prototype test at J-PARC

Stripline Feedthrough prototype test at J-PARC

He circulation for target cooling

Standards for the neutrino event generators

Experiments has been bound one (or a few) "generator(s)" but high demands to use "different" generators these days.

Efforts to define standards like Neutrino beam simulation API Flux / Geom. driver flux/geometry drivers, + Neutrino event (interaction) generator output data formats Detector simulator has been started. Fast simulator Event reconstruction "Generator tools workshop" held at FNAL from Jan. 8 to 10th. Analysis tools

Flux+Geometry driver (Generator independent software package) Handle various neutrino beam flux inputs and detectors

Standard API

Common data format

Neutrino event generator

SYNERGY BTW HK AND DUNE:

- Common scientific goals
 - promoting neutrino oscillation science
 - essential for the two programs to work together
- High intensity proton accelerator and beamline
 - beam dynamics, suppression of beam loss
 - beam window, target and horn
 - on-going collaboration under US-Japan program
- Additional measurements and Analysis
 - Neutrino cross section measurements
 - Hadron production experiments for neutrino flux
 - NA61(CERN) and EMPHATIC(Fermilab)
 - Collaboration in analysis
 - T2K-NOvA supported under US-Japan program

COMPLEMENTARITY:

Accelerator neutrinos

- Different beam spectra (off axis vs WBB) lead to different systematics and physics sensitivities.
- Hyper-K: larger fiducial, harder for hadrons
 - kinematic energy reconstruction with leptons
- DUNE: detects all final state particles
 - calorimetric energy reconstruction
- Neutrino astronomy (solar, supernova)
 - Hyper-K: high statistics $\bar{\nu}_e$, direction of ν_e
 - DUNE: deep low BG site, energy of ν_e
- Atmospheric neutrino oscillogram
 - Hyper-K: neutron to tag $\bar{\nu}_e$ (e⁺ provides direction and energy)
 - DUNE: fully reconstruct v_e final states to get direction and energy

SUMMARY:

- Hyper-K has started its construction phase.
 Experiment will start in 2027.
- Synergy and Complementarity between Hyper-K and DUNE.
- We would like to work together with international partners and contribute to the world-wide effort to make a strong particle physics and astronomy program.

