
TBB based multi-threading in Wire-Cell

Haiwang Yu (BNL)
for the Wire-Cell team

LArSoft Coordination Meeting
Nov. 19, 2019

Wire-Cell – brief review

11/19/19 Haiwang, LArSoft Coordination Meeting 2

Wire-Cell is a Software project for LArTPC reconstruction
Lead by Brett Viren etc.

Wire-Cell uses “Data Flow Programing” paradigm

Wire-Cell ported graph
• computing nodes with defined input/output type
• const data objects passed along edges
• no mutable global
• run time configurable using JSON/jsonnet

Wire-Cell engine
• Pgrapher – single thread, no overhead

• current default
• TbbFlow – multi-thread, memory sharing, some memory

overhead
• Not in wire-cell ups build yet

References:

Wire-Cell main repository:
https://github.com/WireCell/wire-cell-toolkit

B. Viren, BNL DUNE Computing Workshop, Jan. 2019
https://indico.bnl.gov/event/5527/contributions/25812/

Manual, blog, Doxygen
https://wirecell.github.io/

Tutorial website by C. Zhang etc.
https://czczc.github.io/wire-cell-tutorial/

B. Viren, BNL DUNE Computing Workshop, Jan. 2019
https://indico.bnl.gov/event/5527/contributions/25812/

Interact with LArSoft via larwirecell package

https://github.com/WireCell/wire-cell-toolkit
https://indico.bnl.gov/event/5527/contributions/25812/
https://wirecell.github.io/
https://czczc.github.io/wire-cell-tutorial/
https://indico.bnl.gov/event/5527/contributions/25812/

Example of Wire-Cell graph: Signal Processing

11/19/19 Haiwang, LArSoft Coordination Meeting 3

From LArSoft To LArSoft

Signal Processing
per APA

Configured by https://github.com/HaiwangYu/wct-analysis/blob/master/exp_data/dec-to-sig.jsonnet
Pgrapher and TbbFlow share same jsonnet configuration file

https://github.com/HaiwangYu/wct-analysis/blob/master/exp_data/dec-to-sig.jsonnet

Example of Wire-Cell nodes

11/19/19 Haiwang, LArSoft Coordination Meeting 4

INode types:
• Source
• Sink
• Function
• Fanout
• Fanin
• etc.

IConfigurable provides JSON/jsonnet
configuration interface

Wire-Cell data objects

11/19/19 Haiwang, LArSoft Coordination Meeting 5

Initially designed for transient only
• Only considered interfacing to LArSoft objects

Some persistent mechanism in Wire-Cell
• ROOT – Magnify utilities
• Initial exploration on HDF5 with H5Cpp

• https://github.com/WireCell/wire-cell-toolkit/pull/10

Wire-Cell ‘Frame’ serialized to ROOT and HDF5 format

tick

channel channel

https://github.com/WireCell/wire-cell-toolkit/pull/10

Wire-Cell node ⟷ TBB node

11/19/19 Haiwang, LArSoft Coordination Meeting 6

nodes with multiple input/output ports
• Wire-Cell nodes use STL containers that could have run-time variable length
• TBB nodes use std::tuple which has compile-time variable length
• Some efforts made for this adaption
• More in: https://github.com/WireCell/wire-cell-toolkit/tree/master/tbb

type flow for the `FanoutWrapper`,
an object is responsible for any type
conversion at its boundaries

INode handles the logic splitting
tbb::split handles the thread splitting

INode: Wire-Cell node (Fanout)
[]: std::vector
{}: std::tuple
types are color coded

https://github.com/WireCell/wire-cell-toolkit/tree/master/tbb

Run Wire-Cell with LArSoft/art

11/19/19 Haiwang, LArSoft Coordination Meeting 7

As pointed out in K. Knoepfel, LArSoft Workshop 2019
https://indico.fnal.gov/event/20453/session/8/contribution/12/material/slides/0.pdf
Current (?) LArSoft uses many ‘Legacy’ services
Chains including them can only run in single threaded mode

We isolated a section does not need any ‘Legacy’ services for testing:
• Decoded digits ⟹ Signal Processing
• https://github.com/HaiwangYu/wct-analysis/blob/master/exp_data/dec-to-sig.fcl

Very preliminary results - more profiling on-going

1 event

https://indico.fnal.gov/event/20453/session/8/contribution/12/material/slides/0.pdf
https://github.com/HaiwangYu/wct-analysis/blob/master/exp_data/dec-to-sig.fcl

Next: improve FFT with FFTW

11/19/19 Haiwang, LArSoft Coordination Meeting 8

We use FFTW as backend of Eigen FFT operations
The FFTW execution is thread safe while the planner is NOT

Thanks to the LArSoft team !!
for quickly adding libfftw*_threads.so in v3_3_8a
so we could have this test with ups products

For now we use this to add locks around planner calls
void fftw_make_planner_thread_safe(void)

This is limiting the CPU usage efficiency in some cases

Will fix this with per-thread planner call instead of locks

Noise filtering with sticky code fix (SCF)

SCF w/o FFT

SCF w FFT

