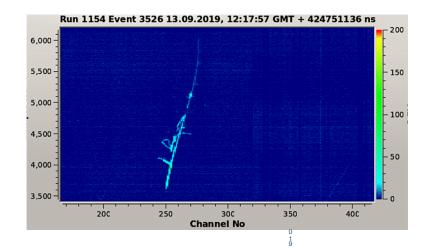
Heidi Schellman for the Computing Consortium

Series of workshops

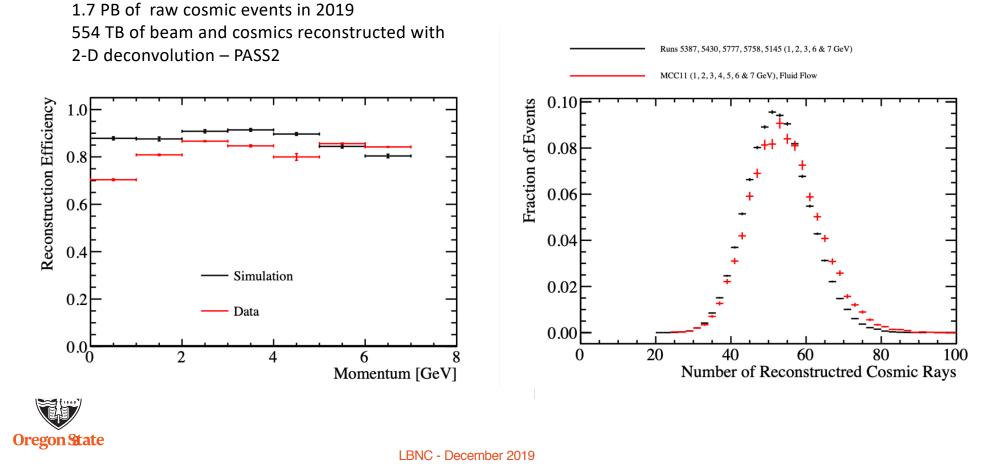
- October 18 Kickoff workshop in Edinburgh
- DUNE collaboration meetings in January and May
- August 19 Data Model workshop at BNL
 - Worked through interfaces with DAQ and databases
- September 9 Computing Model workshop at FNAL joint with GDB
 - Workflow use cases
 - Progress on uniform authentication
 - Draft Storage model
- December 19 Database workshop at Colorado State
 - Hardware databases
 - Conditions database

Formation of Frameworks task force (Andrew Norman and Paul Laycock)

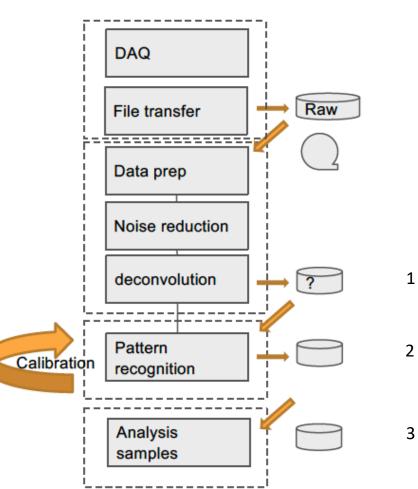

ProtoDUNE Dual-Phase

Oregon State

• Gas amplification raises S/N


- Data taking started late Aug 2019
- ~157 TB of raw data so far
- 110 MB/event with 2 CRP available
- No compression in first tests
- First reconstruction tests have been successful

CHEP 2019


SP - Reconstruction Quality

LAr TPC data processing

- hit finding and deconvolution
 - x5 (ProtoDUNE)
 - x100 (Far Detector) data reduction
 - Takes ~30 sec/APA
 - Do it 1-2 times over expt. lifetime
- Pattern recognition (Tensorflow, Pandora, WireCell)
 - Some data expansion
 - Takes ~30-50 sec/APA now
 - Do it ? times over expt.
- Analysis sample creation and use
 - multiple² iterations
 - Chaos (users) and/or order (HPC)

Oregon State

Current status

- Processing chain exists and works for both protoDUNEs
 - Data stored on tape at FNAL and CERN, staged to dCache in 3-8 8GB files
 - Use xrootd to stream data to jobs
 - Processing for both SP and DP takes ~500 sec/event (80 sec/APA)
 - Signal processing is < 2 GB of memory
 - Pattern recognition is 2-3 GB
 - Copy 2 GB output back as a single transfer.
 - SP TensorFlow pattern recognition likes to grab extra CPU's (fun discussion)
- Note: ProtoDUNE-SP data rates at 25 Hz are equivalent to the 30 PB/year expected for the full DUNE detector. (Just for 6 weeks instead of 10 years)
- ProtoDUNE-DP
 - Data transfer and storage chain operational since August up to 2GB/s transfer to FNAL/IN2P3

Oregon State

International CPU Contributions GPGrid PDUNE-SP data took BNL-SDCC-CE01 UColorado_HEP 6 weeks to collect NWICG_NDCMS GLOW Nebraska BNL-ATLAS Reprocessing passes CIT_CMS_T2 SU-ITS-CE2 are generally 4-6 SU-ITS-CE3 US UCSDT2 weeks on ~8000 cores UElorida-HPC OUK AGLT2 CH MWT2 UKI-NORTHGRID-MA... In 2019 so far, 49% of NL UKI-SOUTHGRID-OX-.. UKI-SCOTGRID-ECDF ES production wall UKI-SOUTHGRID-RAL.. CZ 🔴 hours are from UKI-NORTHGRID-LIV-... RAL-LCG2 FR outside USA UKI-LT2-IC-HEP UKI-NORTHGRID-LAN... Actively working to UKI-NORTHGRID-SHE.. CERN-PROD add more sites and SURFsara NIKHEF-ELPROD countries pic CIEMAT-LCG2 FZU IN2P3-CC

LBNC - December 2019

Oregon State

Ken Herner's talk

Draft Distributed computing model

- Less "tiered" than current WLCG model \rightarrow **DOMA**
- Collaborating institutions (or groups) of institutions) provide significant disk resources (~1PB chunks)
- Rucio places multiple copies of datasets
- We likely can use common tools:
 - But need our own contribution system

And may have different requirements for dataset definition and tracking **Oregon State**

Archive Archive Center Center CPU CPU Таре Таре CPU CPU Таре CPU Таре CPU Data/Compute Data/Compute Center Center CPU CPU CPU CPU CPU CPU HPC Compute Compute Site CPU CPU CPU Site CPU CPU

Future compute model draft

- Tape archive for raw data at two places (FNAL + external to US)
 - Second site may be a consortium rather than a single site
 - Currently FNAL/CERN
- Important derived data sets are disk resident and controlled by Rucio
 - Minimum of two copies
- Data tracked through a replacement for the existing SAM system
- Data delivered either by local copies or through streaming (xrootd)
- Jobs submission systems being evaluated
 - FNAL POMS/GlidenWMS submissions work

- Demonstration at RAL of running a DIRAC job using SAM for data delivery

Near term storage and CPU assumptions

- Raw data based on protoDUNE per-APA
 - SP / 2.5 compression
 - DP / 10 compression
- Reconstructed data assumes raw hits are not stored. Ends up being about 1/10 size of uncompressed raw data.
 - Both DP and SP take ~80 sec/APA of which ~1/3 is raw hit processing and the rest is pattern recognition.
- Assume 2 copies of raw data on tape
- Assume 2 copies of reconstructed data on disk kept for 3 years
- ProtoDUNE simulation takes ~ 40 min/event for outputs are ~200 MB/event

Storage estimates docdb-17086

		2018	2019	2020	2021	2022	1st FD module
		asbuilt					compressed
SP	Events, M	10.9	19.4	6.5	23.5	30.0	2.4
	Raw data, TB	751	1,197	448	1,624	2,072	5,944
	Reco data, TB	1,501	395	134	487	621	59
per pass	CPU, MH	2	3	1	4	5	12
DP	Events, M	0.0	1.0	21.6	61.8	64.4	0.0
	Raw data, TB	0	114	238	1,359	1,416	0
	Reco data, TB	0	137	238	1,359	1,416	0
per pass	CPU, MH	0	0	4	10	11	0
yearly							
total	Events, M	10.9	20.4	28.1	85.3	94.3	2.4
2x	Raw data, TB	1,501	2,621	1,371	5,965	6,975	11,888
2 passes	Reco data, TB	3,003	1,063	744	3,692	4,075	119
copies	reco data, TB	6,005	2,127	1,488	7,383	8,149	238
	CPU, MH x2	4	7	9	28	31	12
	total storage	7,507	LBNC - Decamber82	⁰¹⁹ 2,859	13,348	15,124	12,126

DUNE

Simulation and Cumulative storage

	sim events, M	2.5	10.0	10.0	10.0	10.0	10.0
	sim size	500	2000	2000	2000	2000	2000
	CPU - MHrs	1.875	7.5	7.5	7.5	7.5	7.5
Cumulative		2018	2019	2020	2021		1st FD module
Raw *2	TAPE	1,501	4,123	5,493	11,458	18,433	30,321
Reco 2 versions for 2 years		3,003	4,066	1,807	4,436	7,766	4,193
Reco *2 copies	DISK	6,005	8,132	3,615	8,871	15,532	8,387
sim for 2 years		500	2,500	4,500	6,500	8,500	10,500
sim*2 on disk		1,000	5,000	9,000	13,000	17,000	21,000
total disk		7,005	13,132	12,615	21,871	32,532	29,387

CPU needs

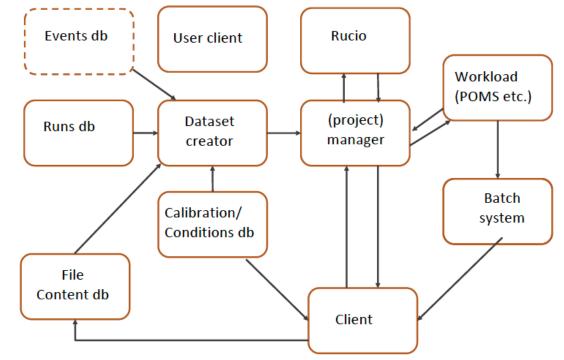
RECONSTRUCTION

- ProtoDUNE events are more complex than our long term data.
 - ~500 sec to reconstruct 75 MB compressed 7 sec/MB
 - For FD, signal processing will dominate at about 3 sec/MB
 - < 30 PB/year of FD data translates to ~100 M CPU-hr/year
 - That's ~ 12K cores to keep up with data. But no downtimes to catch up.
- Near detector is unknown but likely smaller.

ANALYSIS (Here be Dragons)

• NOvA/DUNE experience is that data analysis/parameter estimation can be very large

- \sim 50 MHrs at NERSC for NOvA fits


Data tracking project

- FNAL neutrino experiments use an updated version of the SAM* file database from D0/CDF
 - Needs a remodel (gut renovation?)
- Develop replacement for SAM components that describe data
 - Beam/detector config
 - Processing provenance
 - Normalization

Oregon State

13

• Use Rucio for file placement and location

Long term development personnel needs (based on LHCb experience) ~ 20 FTE

- Distributed Computing Development and Maintenance -5.0 FTE
- Software and Computing Infrastructure Development and Maintenance - 6.0 FTE
- Central Services Manager and Operators - 1.5 FTE
- Computing Shift Leaders 1.5 FTE
- Oregon State
- User Support 1.0 FTE

- Application Managers and Librarians - 2.0 FTE
- Database Optimization and Maintenance - 0.5 FTE
- Distributed Data Manager 0.5 FTE
- Distributed Workload Manager -0.5 FTE
- Distributed Production Manager -0.5 FTE
- Overall Coordination 2.0 FTE

Unknowns for the future

- \$\$\$ many of those people are computing specialists that need to be paid
- Near detector:
 - Rate ~ 1 Hz, technology not yet decided But software integration underway
 - Occupancies will be similar to ProtoDUNE at 1 Hz \rightarrow O(1) PB/year?
- Processor technologies
 - HPC's
 - Less memory/more memory?
 - GPU's? << signal processing may love these!
- Storage technologies
 - Tape
 - Spinning disk

Something else?

OregonState

US consortium

- 4 national labs (ANL, BNL, FNAL and LBNL)
- 5 US universities Colorado State, Minnesota, Oregon State, Wichita State and William and Mary
- 3 thrusts
 - Databases Hardware and integrated design
 - Data model and algorithms for large scale computation on diverse hardware
 - Coding standards, build tools and training to ensure ability of collaborators to contribute to robust algorithms for reconstruction and analysis
- White paper this month.
- Formal proposal going in early in 2020.

We stand on the shoulders of giants

- Art framework, Larsoft, Pandora and WireCell
 - NOvA
 - ArgoNeut
 - MicroBooNE
- Models and simulation
 - GEANT4 and Fluka
 - GENIE, Neut, GiBUU, NuWro, ...
- Beam models
 - G4numi -> g4lbnf
 - ppfx

Oregon State

Infrastructure

- Jobsub/POMS
- WLCG and OSG
- Enstore, dCache
- uCondb and ifbeam
- SAM catalog
- Elisa logbook
- Rucio
- Authentication systems
- OSG/WLCG/HSF for new ideas!

Pete explains the growth of contributions

