Status of ProtoDUNE-SP Performance Paper

Flavio, Tingjun, Tom

ProtoDUNE DRA Meeting Dec 4, 2019

2 First results on ProtoDUNE-SP LArTPC performance from

3 a test beam run at the CERN Neutrino Platform

20	1	Introduction	1	5.2.1 Single Photo-electron Sensitivity	38
				5.2.2 Signal to Noise in photosensors Passive ganging Configuration	ons 40
21	2	The ProtoDUNE detector	3	5.2.3 Light Calibration	40
	2	H4-VLE Beam Line Instrumentation		5.2.4 After pulses and cross talk	42
22	3		4	5.2.5 Response stability over time	43
23			4 5	5.3 Photon Detector Performance	43
24				5.3.1 Initial Comparison of Cosmic Muons to Simulation	45
25		3.3 Event Reconstruction and Particle Identification	5	5.3.2 Efficiency	46
26		3.3.1 Momentum Spectrometer Technique/Calculation 3.3.2 Particle Identification Logic	6 7	5.3.3 Time Resolution	48
27		3.3.2 Particle Identification Logic 3.4 Integration into the ProtoDUNE-SP Analysis Framework	7		
28		3.4 Integration into the ProtoDUNE-SP Analysis Framework	/	6 TPC Response	50
29	4	TPC characterization	8	6.1 Imaging: beam and cosmic event display gallery	50
30		4.1 TPC and Cold Electronics	8	6.2 Space Charge Effects in ProtoDUNE-SP	52
31		4.1.1 TPC	8	6.3 Cosmic-ray muon-based calibration	57
32		4.1.2 Cold Electronics and Readout DAQ	10	6.3.1 Charge calibration	57
33		4.2 TPC Data Preparation and Noise Suppression	12	6.3.2 Energy scale calibration:	58
34		4.2.1 Pedestal evaluation	12	6.4 Calorimetric Energy reconstruction and Identification	60
35		4.2.2 Initial charge waveforms	13	6.4.1 dE/dx versus residual range for 1 GeV/c beam protons	60
36		4.2.3 Sticky code identification	13	6.4.2 Identification and calorimetric energy reconstruction of 1 Ge	
37		4.2.4 ADC code mitigation	14	74 and muons	64
38		4.2.5 Timing mitigation	14	6.4.3 dE/dx for 1 GeV/c positrons	66
39		4.2.6 Tail removal	14	7 Photon detector response	68
40		4.2.7 Correlated Noise Removal (CNR)	16		
41		4.3 Charge Calibration	17		gy resolution 68
42		4.4 TPC Noise Level	17		71
43		4.5 Signal Processing	21	2 27 .	71
44		4.6 Event Reconstruction	24	7.2 Single photon rate	/1
45		4.6.1 Hit Finding	24	8 Conclusions	72
46		4.6.2 Pattern Recognition with Pandora	25		
47		4.7 Signal to noise performance	27		
48		4.8 Electron Lifetime	29		
				- Civet duett of Duete DIINIC	CD
49	5	Photon Detector characterization	33	 First draft of ProtoDUNE. 	-se peri
50		5.1 The Photon Detector System	33		•
51		5.1.1 Light Collectors	33	almost ready.	
52		5.1.2 Photosensors	34	annost ready.	

35

- rformance paper is almost ready.
- 74 pages and 59 figures.

5.2 Photosensor Performance

5.1.3 Readout DAQ and Triggering

5.1.4 Photon Detector Calibration and Monitoring System

Plan to move forward

- We plan to start the group review of this paper this week.
 - The first draft will be uploaded to docdb
 - An email will be sent to the DRA mailing list with a link to the docdb entry and a deadline.
- We will assign two internal reviewers for this paper.
- Everyone in the DRA group is welcome to comment on the paper.
- We aim to finish the group review by the next collaboration meeting.
- The next steps would be ARC review and collaboration review.

Event displays in the paper

- Pengfei Ding (FNAL SCD) develop python code to make event displays.
- We made event displays after noise removal and normalize charge to ke.
- We selected several event displays to be included in the paper.

A 0.5 GeV/c positron candidate.

A 6 GeV/c positron candidate.

A 1 GeV/c pion candidate.

A 6 GeV/c pion candidate.

A 1 GeV/c stopping proton candidate.

A 2 GeV/c pion charge exchange candidate.

A 6 GeV/c kaon candidate.

