MicroBooNE @ NuSTEC

Kirsty Duffy, <u>Andy Furmanski</u>
NuSTEC board meeting
December 2019

Disclaimer

• Similar to other experiments updates...

 This is largely my own thoughts, though I try to stick to official MicroBooNE public statements

MicroBooNE

Since the last update

First xsec measurements!

- 1. CC-inclusive (diff)
- 2. CC-pi0 (integrated)

Since the last update

Detector unfolding

- First measurements developed a "forward-folding" mechanism
 - Results presented in reconstructed variables
- We are interested to hear feedback from theorists, model builders, tuners, etc
 - Does this work? Can we make it easier?
 - We already know the methods can be made more accurate
- Likely a discussion for the CCWG

Low-energy excess search

- MicroBooNE's primary goal now is to "search for" the low-energy excess observed by MiniBooNE
- Cosmic backgrounds eliminated through requiring a proton
 - We would like to have some confidence in our prediction of final state protons
- Use the v_{μ} spectrum to constrain the v_{e} spectrum
 - ν_{μ}/ν_{e} ratio on argon?

Protons

MEC models/uncertainties

- We have two MEC models
- Neither make hadron kinematic predictions
- Neither really quantify uncertainties
- Total cross sections differ by 100%
 - This is a large systematic uncertainty for us
 - Is it a realistic estimate?

QE models

- We are at low energy and "large" nuclear size
- Lots of low Q2 issues...
- Inclusive data sensitive in forward region to nuclear model and RPA corrections
 - No model that we tested achieves "good" agreement, though we are moving in the right direction

FSI

- Sensitive to low-energy hadrons
- Large differences between models
 - Largest differences sit just below our thresholds
- We would appreciate guidance from the generator/theory communities as to how to better assess uncertainties on FSI
 - And how to constrain this better with our own data

Ratio

Known unknowns

- MicroBooNE is (read I am) very glad to hear about progress on radiative corrections!
- We place a 2% uncertainty on the ν_{μ}/ν_{e} ratio to account for these
 - Basically copying T2K
- We also have uncertainties due to second-class currents
 - Again, shamelessly stolen from T2K
- Is this "enough"? Other effects?

Nuclear size

- Strategy involves using external data (as far as possible) to select models and uncertainties
 - Most external data is on carbon
 - We don't really know how to "add" uncertainty for scaling to argon
 - Any input here is greatly appreciated!
- Some data from MINERvA heavy targets C/Fe
 - Attempt to "interpolate" to argon?

Coming results

Exclusive channels

- Several exclusive channel analyses will come out soon:
 - CC0πNp
 - CC0π2p
 - "QE-like" CC1p
 - Semi-inclusive mu+p+X generator fitting
- And stepping up the energy:
 - CCπ0 differential measurement
 - CCπ+

Proton measurements

- Current threshold of 300 MeV/c
- Cross section measurements in final stages
- Better ability to distinguish nuclear effects than inclusive data

Use of GENIE

- We are moving to GENIE v3
- Shows better agreement with most data
- Expecting to be the first neutrino experiment to do a GENIE v3-based analysis
 - Working hard to understand the uncertainties

Interpretations...

- All of these data are final state measurements
 - Mix of interaction channels, muddied by FSI
- We will try to interpret our data in this context (i.e. infer where tensions with models indicate problems with those models)
- But, people who know and understand those models better than us can help here!
 - Serves to benefit those models too, as a rigorous test of their accuracy

