Work of Aligarh group 2019

M Sajjad Athar

Aligarh Muslim University

Charged current deep inelastic scattering process

 $v_l/\bar{v}_l(k) + N(p) \to l^-/l^+(k') + X(p')$

$$\frac{d^2 \pmb{\sigma}^N}{d \Omega' d E'} = \frac{G_F^2}{(2\pi)^2} \, \frac{|\mathbf{k}'|}{|\mathbf{k}|} \left(\frac{m_W^2}{q^2 - m_W^2}\right)^2 L^{\mu\nu} W^N_{\mu\nu}$$

Leptonic tensor

$$L^{\mu\nu} = k^{\mu}k^{\prime\nu} + k^{\nu}k^{\prime\mu} - k.k^{\prime}g^{\mu\nu} \pm i\varepsilon^{\mu\nu\rho\sigma}k_{\rho}k^{\prime}_{\sigma}$$

Hadronic tensor

$$\begin{split} W^N_{\mu\nu} &= \left(\frac{q_\mu q_\nu}{q^2} - g_{\mu\nu}\right) W_{1N} + \frac{1}{M^2_N} \\ &\times \left(p_\mu - \frac{p.q}{q^2} q_\mu\right) \left(p_\nu - \frac{p.q}{q^2} q_\nu\right) W_{2N} \\ &\quad - \frac{i}{2M^2_N} \epsilon_{\mu\nu\rho\sigma} p^\rho q^\sigma W_{3N} \end{split}$$

Dimensionless SF

$$\begin{array}{rcl} M_N W_{1N}(\nu,Q^2) &=& F_{1N}(x,Q^2), \\ & \nu W_{2N}(\nu,Q^2) &=& F_{2N}(x,Q^2), \\ & \nu W_{3N}(\nu,Q^2) &=& F_{3N}(x,Q^2). \end{array}$$

In terms of PDFs

$$\begin{array}{lll} F_2^{Vp} &=& 2x[d(x)+s(x)+\bar{u}(x)+\bar{c}(x)],\\ F_2^{\bar{V}p} &=& 2x[u(x)+c(x)+\bar{d}(x)+\bar{s}(x)],\\ xF_3^{Vp} &=& 2x[d(x)+s(x)-\bar{u}(x)-\bar{c}(x)],\\ xF_3^{\bar{V}p} &=& 2x[u(x)+c(x)-\bar{d}(x)-\bar{s}(x)]. \end{array}$$

2/27

$F_{iN}^{WI}(x,Q^2)$ vs Q^2 : arXiv:1911.12573

$2xF_{1A}^{WI}(x,Q^2)$ vs Q^2 : arXiv:1911.12573

NME in Weak & Electromagnetic interactions: JPG: Invited

review

Isoscalar vs Nonisoscalar nuclei: arXiv:1911.12573

Theory vs Phenomenology: $v_l - {}^{40}Ar$: JPG: Invited review

Differential cross section ratios: $V_l - A$: arXiv:1911.12573

Differential cross section ratios: $\bar{v}_l - A$: arXiv:1911.12573

Associated Particle Production

$$\gamma(q) + p(p) \longrightarrow K^+(p_k) + \Lambda(p')$$

Associated Particle Production

$$\gamma(q) + p(p) \longrightarrow K^+(p_k) + \Lambda(p')$$

$$\begin{split} J^{\mu}|_{s} &= ieA_{s} F_{s}(s)\bar{u}(p') \ \dot{p}_{k}\gamma_{5} \frac{\dot{p}+\dot{q}+M}{s-M^{2}} \left(\gamma^{\mu}F_{1}^{\rho}(0)+i\frac{F_{2}(0)}{2M}\sigma^{\mu\nu}q_{\nu}\right)u(p), \\ J^{\mu}|_{t} &= ieA_{t} F_{t}(t)\bar{u}(p') \left[(\dot{p}-\dot{p'})\cdot\gamma_{5}\right]u(p) \frac{(2p_{k}^{\mu}-q^{\mu})}{t-M_{k}^{2}}, \\ J^{\mu}|_{u\Lambda} &= ieA_{u}^{\Lambda} F_{u}^{\Lambda}(u)\bar{u}(p') \left(\gamma^{\mu}F_{1}^{\Lambda}(0)+i\frac{F_{2}^{\Lambda}(0)}{2M_{\Lambda}}\sigma^{\mu\nu}q_{\nu}\right) \frac{\dot{p'}-\dot{q}+M_{\Lambda}}{u-M_{\Lambda}^{2}} \ \dot{p}_{k}\gamma_{5}u(p), \\ J^{\mu}|_{u\Sigma^{0}} &= ieA_{u}^{\Sigma^{0}} F_{u}^{\Sigma^{0}}(u)\bar{u}(p') \left(\gamma^{\mu}F_{1}^{\Sigma^{0}}(0)+i\frac{F_{2}^{\Sigma^{0}}(0)}{2M_{\Sigma^{0}}}\sigma^{\mu\nu}q_{\nu}\right) \frac{\dot{p'}-\dot{q}+M_{\Sigma^{0}}}{u-M_{\Sigma^{0}}^{2}} \ \dot{p}_{k}\gamma_{5}u(p), \\ J^{\mu}|_{u\Sigma^{0}} &= -ieA_{CT} \ F_{CT}\bar{u}(p') \ \gamma^{\mu}\gamma_{5}u(p), \end{split}$$

$$A_{\delta} = A_t = A_u^{\Lambda} = A_{CT} = -\left(\frac{D+3F}{2\sqrt{3}f\pi}\right), \qquad A_u^{\Sigma 0} = \left(\frac{D-F}{2f\pi}\right).$$

11/27

$$\begin{split} J^{\mu}|_{s} &= ieA_{s} \, F_{s}(s)\bar{u}(p') \, \not{p}_{k} \gamma_{S} \, \frac{\not{p} + \not{q} + M}{s - M^{2}} \left(\gamma^{\mu} F_{1}^{\rho}(0) + i \frac{F_{2}(0)}{2M} \, \sigma^{\mu\nu} q_{\nu} \right) u(p), \\ J^{\mu}|_{t} &= ieA_{t} \, F_{t}(t)\bar{u}(p') \left[(\not{p} - \not{p}') \cdot \gamma_{S} \right] u(p) \frac{(2p_{k}^{\mu} - q^{\mu})}{t - M_{k}^{2}}, \\ J^{\mu}|_{u\Lambda} &= ieA_{u}^{\Lambda} \, F_{u}^{\Lambda}(u)\bar{u}(p') \left(\gamma^{\mu} F_{1}^{\Lambda}(0) + i \frac{F_{2}^{\Lambda}(0)}{2M_{\Lambda}} \, \sigma^{\mu\nu} q_{\nu} \right) \frac{\not{p}' - \not{q} + M_{\Lambda}}{u - M_{\Lambda}^{2}} \, \not{p}_{k} \gamma_{S} u(p), \\ J^{\mu}|_{u\Sigma0} &= ieA_{u}^{\Sigma0} \, F_{u}^{\Sigma0}(u)\bar{u}(p') \left(\gamma^{\mu} F_{1}^{\Sigma0}(0) + i \frac{F_{2}^{\Sigma0}(0)}{2M_{\Sigma0}} \, \sigma^{\mu\nu} q_{\nu} \right) \frac{\not{p}' - \not{q} + M_{\Sigma0}}{u - M_{\Sigma0}^{2}} \, \not{p}_{k} \gamma_{S} u(p), \\ J^{\mu}|_{CT} &= -ieA_{CT} \, F_{CT} \, \ddot{u}(p') \, \gamma^{\mu} \gamma_{S} u(p), \end{split}$$

$$A_{\delta} = A_t = A_u^{\Lambda} = A_{CT} = -\left(\frac{D+3F}{2\sqrt{3}f\pi}\right), \qquad A_u^{\Sigma 0} = \left(\frac{D-F}{2f\pi}\right).$$

A general dipole form for $F_x(x)$

$$F_x(x) = \frac{\Lambda_i^4}{\Lambda_i^4 + (x - M_x^2)^2}, \quad \Lambda_B = 0.52 GeV \quad \Lambda_R = 1.1 GeV$$

Davidson-Workman[PRC 63, 025210 (2001)]

$$F_{CT} = F_s(s) + F_t(t) - F_s(s) \times F_t(t).$$

M Sajjad Athar

Resonances	M_R [GeV]	J	Ι	Р	Г	$K\Lambda$ branching	<i>SKAR</i>
					(GeV)	ratio (%)	
$S_{11}(1650)$	1.655 ± 0.015	1/2	1/2	_	0.135 ± 0.035	10 ± 5	0.79
$P_{11}(1710)$	1.700 ± 0.020	1/2	1/2	+	0.120 ± 0.040	15 ± 10	1.32
$P_{13}(1720)$	1.675 ± 0.015	3/2	1/2	+	$0.250\pm^{0.150}_{0.100}$	4.5 ± 0.5	2.92
$P_{11}(1880)$	1.860 ± 0.040	1/2	1/2	+	0.230 ± 0.050	20 ± 8	0.91
<i>S</i> ₁₁ (1895)	1.910 ± 0.020	1/2	1/2	—	0.110 ± 0.030	18 ± 5	0.41
$P_{13}(1900)$	1.920 ± 0.020	3/2	1/2	+	0.150 ± 0.050	11 ± 9	1.028

Resonances	M_P [GeV]	J	Ι	Р	Г	$K\Lambda$ branching	Q KAP
	A L - · · J				(GeV)	ratio (%)	OKAK
$S_{11}(1650)$	1.655 ± 0.015	1/2	1/2	_	0.135 ± 0.035	10 ± 5	0.79
$P_{11}(1710)$	1.700 ± 0.020	1/2	1/2	+	0.120 ± 0.040	15 ± 10	1.32
$P_{13}(1720)$	1.675 ± 0.015	3/2	1/2	+	$0.250\pm^{0.150}_{0.100}$	4.5 ± 0.5	2.92
$P_{11}(1880)$	1.860 ± 0.040	1/2	1/2	+	0.230 ± 0.050	20 ± 8	0.91
<i>S</i> ₁₁ (1895)	1.910 ± 0.020	1/2	1/2	—	0.110 ± 0.030	18 ± 5	0.41
$P_{13}(1900)$	1.920 ± 0.020	3/2	1/2	+	0.150 ± 0.050	11 ± 9	1.028

• The helicity amplitudes for the resonances $S_{11}(1650)$, $P_{13}(1720)$ and $P_{13}(1920)$ are taken from MAID 2011 while for the resonances $P_{11}(1710)$, $P_{11}(1880)$ and $S_{11}(1895)$, the helicity amplitudes are taken from PDG.

Hadronic current for the s-channel processes where a resonant state $R^{\frac{1}{2}}$ is produced

Hadronic current for the s-channel processes where a resonant state $R^{\frac{1}{2}}$ is produced

$$j^{\mu}\big|_{R}^{\frac{1}{2}\pm} = ie \ \bar{u}(\vec{p}\,') \frac{g_{K\Lambda R\frac{1}{2}}}{M_{K}} p_{K} \Gamma_{s} \frac{p + q + M_{R}}{s - M_{R}^{2} + iM_{R} \Gamma_{R}} \Gamma_{\frac{1}{2}\pm}^{\mu} u(\vec{p}\,),$$

The most general expression of the hadronic current for the s-channel where a resonant state $R^{\frac{3}{2}}$ (with positive or negative parity) is produced and decays to a kaon and a lambda in the final state

$$j^{\mu}\big|_{R}^{\frac{3}{2}\pm} \quad = \quad ie \; \frac{g_{K\Lambda R}}{M_{K}} \; \frac{p_{K}^{\alpha}\Gamma_{s}}{s-M_{R}^{2}+iM_{R}\Gamma_{R}} \bar{u}(\vec{p}')P_{\alpha\beta}^{3/2}(p_{R})\Gamma_{\frac{3}{2}\pm}^{\beta\mu}(p,q)u(\vec{p}\,), p_{R}=p+q,$$

where $\Gamma_s = 1(\gamma_5)$ for positive (negative) parity resonances, $g_{K\Lambda R}$ is the coupling strength for $R \to K\Lambda$, where R, determined from partial decay widths. M_R is the mass of the resonance and Γ_R is its decay width.

Resonances	M_R [GeV]	J	Ι	Р	Г	G	G_K^{ν}	G_K^t
					(GeV)			
Λ* (1405)	$1.405 \pm \substack{0.0013\\0.001}$	1/2	0	-	0.0505 ± 0.002	-10.18	-	-
Λ* (1800)	$1.800 \pm \substack{0.080\\0.050}$	1/2	0	-	0.300 ± 0.100	-4.0	-	-
<i>K</i> *(892)	0.89166 ± 0.00026	1	1/2	-	0.0508 ± 0.0009	-	-0.18	0.02
<i>K</i> ₁ (1270)	1.272 ± 0.007	1	1/2	+	0.090 ± 0.020	-	0.28	-0.28

Resonances		J	1	1	(GeV)	U	O_K	01
Λ* (1405)	$1.405 \pm 0.0013_{0.001}$	1/2	0	_	0.0505 ± 0.002	-10.18	-	-
Λ* (1800)	$1.800 \pm 0.080 \\ 0.050$	1/2	0	_	0.300 ± 0.100	-4.0	-	-
K*(892)	0.89166 ± 0.00026	1	1/2	-	0.0508 ± 0.0009	-	-0.18	0.0
K ₁ (1270)	1.272 ± 0.007	1	1/2	+	0.090 ± 0.020	-	0.28	-0.

The values of G, G_K^V and G_K^t are fitted to the experimental data and contains both the electromagnetic and strong coupling strengths.

The hadronic current for the Λ^* resonance exchange may be written as

$$J_{\mu}\big|_{\Lambda^*\pm} = ie\bar{u}(p')\frac{G}{M_{\Lambda}+M_{\Lambda^*}}\sigma_{\mu\nu}q^{\nu}\Gamma_5\left(\frac{p'-\not{q}+M_{\Lambda^*}}{u-M_{\Lambda^*}^2+iM_{\Lambda^*}\Gamma_{\Lambda^*}}\right)\not{p}_k\gamma_5\Gamma u(p)$$

with $G = \kappa_{\Lambda\Lambda^*} g_{pK\Lambda^*} / f_{\pi}$, M_{Λ^*} and Γ_{Λ^*} being the mass and the decay width of Λ^* .

The hadronic current for the K^* exchange is obtained as

$$I_{\mu}\big|_{K^{*}} = ie\bar{u}(p')\varepsilon_{\mu\nu\rho\sigma}q^{\rho}(p'-p)^{\sigma}\left(\frac{-g^{\nu\alpha} + (p-p')^{\nu}(p-p')^{\alpha}/M_{K^{*}}^{2}}{t-M_{K^{*}}^{2} + iM_{K^{*}}\Gamma_{K^{*}}}\right) \left[G_{K^{*}}^{\nu}\gamma\alpha + \frac{G_{K^{*}}'}{M+M_{\Lambda}}(p'-p)\gamma\alpha\right]u(p),$$

with $G_{K^*}^{\nu} = \kappa_{KK^*} g_{K^* \Lambda p}^{\nu} / \mu$ and $G_{K^*}^t = \kappa_{KK^*} g_{K^* \Lambda p}^t / \mu$. M_{K^*} and Γ_{K^*} are the mass and width of the K^* resonance,

The hadronic current for the pseudovector kaon K_1 exchange in the *t*-channel as

$$\begin{aligned} J_{\mu}\Big|_{K_{1}} &= ie\bar{u}(p')[g_{\alpha\mu}q\cdot(p-p')-q_{\alpha}(p-p')_{\mu}] \\ &\times \left(\frac{-g^{\alpha\rho}+(p-p')^{\alpha}(p-p')^{\rho}/M_{K_{1}}^{2}}{t-M_{K_{1}}^{2}+iM_{K_{1}}\Gamma_{K_{1}}}\right) \\ &\times \left[G_{K_{1}}^{\nu}\gamma_{\rho}\gamma_{5}+\frac{G_{K_{1}}^{t}}{M+M_{\Lambda}}(p'-p)\gamma_{\rho}\gamma_{5}\right]u(p), \end{aligned}$$

with $G_{K_1}^{\nu} = \kappa_{KK^*} g_{K_1 \Lambda p}^{\nu} / \mu$ and $G_{K_1}^t = \kappa_{KK^*} g_{K_1 \Lambda p}^t / \mu$. M_{K_1} and Γ_{K_1} are the mass and width of the K_1 resonance, respectively.

 σ vs. W for the process $\gamma + p \longrightarrow K^+ + \Lambda$

σ vs. W for the process $\gamma + p \longrightarrow K^+ + \Lambda$: PRD in submission

 $\frac{d\sigma}{d\cos\theta_{K}^{CM}} \text{ VS. } \cos\theta_{K}^{CM} \text{ for the process } \gamma + p \longrightarrow K^{+} + \Lambda \text{ PRD in submission}$

Hyperon production

$$\bar{\mathbf{v}}_{l}(k) + N(p) \longrightarrow l^{+}(k') + Y(p')$$
$$V^{\mu}_{B'B}(p',p) = f_{1}^{B'B}(Q^{2})\gamma_{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{M_{B} + M'_{B}}f_{2}^{B'B}(Q^{2}) + \frac{2q_{\mu}}{M_{B} + M'_{B}}f_{3}^{B'B}(Q^{2})$$

 $A^{\mu}_{B'B}(p',p) = g_1^{B'B}(Q^2) \gamma_{\mu}\gamma_5 + i\sigma_{\mu\nu}\gamma_5 \frac{q^{\nu}}{M_B + M'_B} g_2^{B'B}(Q^2) + \frac{2q^{\mu}}{M_B + M'_B} \gamma_5 g_3^{B'B}(Q^2)$

Hyperon production

$$\bar{v}_{l}(k) + N(p) \longrightarrow l^{+}(k') + Y(p')$$

$$V_{B'B}^{\mu}(p',p) = f_{1}^{B'B}(Q^{2})\gamma_{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{M_{B}+M_{B}'}f_{2}^{B'B}(Q^{2}) + \frac{2q_{\mu}}{M_{B}+M_{B}'}f_{3}^{B'B}(Q^{2})$$
Vector FF
Magnetic FF
Scalar FF
$$A_{B'B}^{\mu}(p',p) = g_{1}^{B'B}(Q^{2})\gamma_{\mu}\gamma_{5} + i\sigma_{\mu\nu}\gamma_{5}\frac{q^{\nu}}{M_{B}+M_{B}'}g_{2}^{B'B}(Q^{2}) + \frac{2q^{\mu}}{M_{B}+M_{B}'}\gamma_{5}g_{3}^{B'B}(Q^{2})$$
Axial vector FF
Electric FF
Pseudoscalar FF

σ vs $E_{\bar{v}_{\mu}}$: Phys. Rev. D. 98, 033005 (2018)

Polarization components vs Q^2 for the process $\bar{v}_{\mu} + p \longrightarrow \mu^+ + \Lambda$: Front. in Phys. 7, 13 (2019)

M Sajjad Athar

Work of Aligarh group 20

Polarization components vs Q^2 for the process $\bar{v}_{\mu} + p \longrightarrow \mu^+ + \Lambda$: Front. in Phys. 7, 13 (2019)

M Sajjad Athar

Work of Aligarh group 20

Polarization components vs $E_{\bar{\nu}_{\mu}}$ for the process $\bar{\nu}_{\mu} + p \longrightarrow \mu^+ + \Lambda$: Phys. Rev. D. 98, 033005 (2018)

M Sajjad Athar

Cambridge University Press

1000 pages

March 2020

The Physics of Neutrino Interactions

M. Sajjad Athar Shri Singh

M Sajjad Athar

Work of Aligarh group 201

25/27

Contents

- Neutrino properties and its interactions
- Neutrinos as relativistic fermions
- Quantisation of free particle fields
- Interacting fields and relativistic perturbation theory
- Phenomenological theory-I: Nuclear beta decays and weak decays of leptons
- Phenomenological theory-II: Weak decays of hadrons
- Gauge field theories and fundamental interactions
- Unified theory of electroweak interactions
- Neutrino scattering from point particles
- Neutrino scattering cross sections from hadrons Quasielastic scattering

Contents

- Neutrino scattering from hadrons- Inelastic scattering-I
- Neutrino scattering from hadrons- Inelastic scattering-II
- Neutrino scattering from hadrons Deep inelastic scattering
- Weak quasielastic $v(\bar{v})$ -nucleus scattering
- Inelastic scattering of (anti)neutrinos from nuclei
- Deep inelastic scattering of (anti)neutrino from nuclei
- Neutrino sources and detection
- Neutrino mixing and oscillations
- Neutrino astrophysics and the synthesis of elements
- Neutrino interaction beyond the standard model