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νe appearance 
from a νμ beam

neutrino oscillation experiment is simple in conception:

86 4 Neutrino Mixing, Mass Hierarchy, and CP Violation

baseline, there is no degeneracy between matter and CP asymmetries at the first oscillation node
where the LBNE neutrino beam spectrum peaks. The wide coverage of the oscillation patterns
enables the search for physics beyond the three-flavor model because new physics effects may
interfere with the standard oscillations and induce a distortion in the oscillation patterns. As a
next-generation neutrino oscillation experiment, LBNE aims to study in detail the spectral shape
of neutrino mixing over the range of energies where the mixing effects are largest. This is crucial
for advancing the science beyond the current generation of experiments, which depend primarily
on rate asymmetries.
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Figure 4.1: The simulated unoscillated spectrum of ‹µ events from the LBNE beam (black histogram)
overlaid with the ‹µ æ ‹e oscillation probabilities (colored curves) for different values of ”CP and normal
hierarchy.

The LBNE reconfiguration study [25] determined that the far detector location at the Sanford
Underground Research Facility provides an optimal baseline for precision measurement of neutrino
oscillations using a conventional neutrino beam from Fermilab. The 1,300≠km baseline optimizes
sensitivity to CP violation and is long enough to resolve the MH with a high level of confidence,
as shown in Figure 2.7.

Table 4.1 lists the beam neutrino interaction rates for all three known species of neutrinos as ex-
pected at the LBNE far detector. This table shows only the raw interaction rates using the neutrino
flux from the Geant4 simulations of the LBNE beamline and the default interaction cross sections
included in the GLoBeS package [130] with no detector effects included. A tunable LBNE beam
spectrum, obtained by varying the distance between the target and the first focusing horn (Horn 1),
is assumed. The higher-energy tunes are chosen to enhance the ‹· appearance signal and improve
the oscillation fits to the three-flavor paradigm. To estimate the NC event rates based on visible

The Long-Baseline Neutrino Experiment
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but difficult in practice: rely on theory to determine cross 
sections: e.g. σ(νe)/σ(νμ) to a precision of 1%
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Figure 4.1: The simulated unoscillated spectrum of ‹µ events from the LBNE beam (black histogram)
overlaid with the ‹µ æ ‹e oscillation probabilities (colored curves) for different values of ”CP and normal
hierarchy.

The LBNE reconfiguration study [25] determined that the far detector location at the Sanford
Underground Research Facility provides an optimal baseline for precision measurement of neutrino
oscillations using a conventional neutrino beam from Fermilab. The 1,300≠km baseline optimizes
sensitivity to CP violation and is long enough to resolve the MH with a high level of confidence,
as shown in Figure 2.7.

Table 4.1 lists the beam neutrino interaction rates for all three known species of neutrinos as ex-
pected at the LBNE far detector. This table shows only the raw interaction rates using the neutrino
flux from the Geant4 simulations of the LBNE beamline and the default interaction cross sections
included in the GLoBeS package [130] with no detector effects included. A tunable LBNE beam
spectrum, obtained by varying the distance between the target and the first focusing horn (Horn 1),
is assumed. The higher-energy tunes are chosen to enhance the ‹· appearance signal and improve
the oscillation fits to the three-flavor paradigm. To estimate the NC event rates based on visible
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neutrino-electron 
scattering basics
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• Phenomenologically important 
powerful constraint on neutrino flux: 
absolute normalization (current) and energy 
dependence (future)

e.g. NUMI beam normalization: 7.5% → 3.9% 

MINERvA, 1906.00111

• Many features common to broader 
program of neutrino-nucleus scattering

- electroweak radiative corrections to four 
Fermi operator basis 

- universal “hadronic penguin” contribution 
(dominates uncertainty in ν-e)

- analytic point particle limit for hard 
function in general case (cf e-p 1605.02613)



neutrino-electron 
scattering basics
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• Kinematics

ν(k′)

ℓ(p′)

ν(k)

ℓ(p)

me  E0
e  me +

2E2
⌫

me + 2E⌫

cos ✓0e =
me + E⌫

E⌫

s
E0

e �me

E0
e +me

- near-forward scattering for Ee’, Eν ≫ me

- can reconstruct Eν from Ee’, θe’ 



neutrino-electron 
scattering basics
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• Cross section

- suppressed by lepton mass  
σ ~ GF2 s ~ GF2 me Eν 
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where PL = (1� �5)/2 and PR = (1 + �5)/2 are projection operators onto left-handed and right-handed
fermions and ✓W denotes the weak mixing angle satisfying MW /MZ = cos ✓W . After Fierz rearrangement
of the charged current contribution, the result may be written as
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where we have introduced the Fermi constant GF = g2/(4
p
2M2

W ), and where the Kronecker symbol �``0
satisfies �``0 = 1 for ` = `0 and �``0 = 0 for ` 6= `0. Note that coe�cients c and cR are the same for all
combinations of lepton flavors, while the coe�cient c⌫``

0

L
depends on whether the neutrino and charged

lepton have the same flavor.
Neglecting the neutrino magnetic moment contribution [60–66], the leading-order cross section of

neutrino-lepton scattering can be expressed, in all possible cases, as [24, 25, 29, 67–92]
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where the limit of elastic process, i.e., m0 = m, is presented in the last step. The neutrino-energy
spectra in Eqs. (14-17) are equivalent to the recoil electron energy spectra due to energy conservation:
m+! = E0+!0. In particular, d�/dE0 = d�/d!0. We later apply this observation to compute di↵erential
cross sections with respect to total electromagnetic energy in the presence of radiative corrections. To
study the angular spectrum, the di↵erential cross section can be obtained by exploiting

dE0 =
4m!2 (m+ !)2 cos⇥ed cos⇥eh

(m+ !)2 � !2 cos2⇥e

i2 . (21)
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L Averaged over flux neutrino cross sections

In the following, we average the energy spectrum with anticipated flux profiles of the DUNE Near De-
tector [132, 133] at Fermilab. In Figures 13 and 14, we show the resulting electron and electromagnetic
energy spectra for neutrino and antineutrino beam modes.
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Figure 13: Electron (e) and electromagnetic (EM) energy spectra in elastic neutrino-electron scattering for
neutrino beam mode of DUNE experiments. Electron energy spectrum is above at low energy. Electron
and muon (anti-)neutrino contributions are shown as well.
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Figure 14: Same as Figure 13 for the antineutrino beam mode.
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- absolute cross sections at <1%
- observable matched to detector (~EM versus e) 
- corrections to ν energy reconstruction 

Need:
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- one loop matching at EW scale

- include two-loop mixed QED-
QCD corrections for leptonic 
operators

- neglect fermion masses except 
top quark

- subsequent high-order RG 
evolution to hadronic scales 
(default μ=2 GeV, nf=4)
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Neutral current: matching to e.m. current 
operator

⌫`⌫`

ee
�

Figure 5: Long-range dynamics in elastic neutrino-electron scattering in the e↵ective theory. Loops with
all interacting fields in the theory are summed up.
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Figure 6: Long-range dynamics in elastic neutrino-electron scattering in the Standard Model: �-Z mixing
and penguin-type diagram.

respectively, as in Eqs. (12) and (23). Note that the coupling cf
L
for charged leptons (f = `) depends

on the neutrino flavor. This perturbative treatment applies to loops involving charged leptons or heavy
quarks (mf � ⇤QCD). Light quarks require a nonperturbative treatment, as discussed in Section 3.3
below. Starting from the nf = 4 flavor theory discussed in Section 2.3, we treat the charm quark as heavy
and the up, down and strange quarks as light.

The correction can be expressed as a modification of electron left- and right-handed currents, cL,RJ
L,R
µ !

cL,RJ
L,R
µ + cf

L,R�J
L,R
µ :
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2ē
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��e (p)
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L2 �m2

f

⌘⇣
(L� q)2 �m2
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⌘ , (39)

and does not depend on the photon gauge. Corrections to either left- or right-handed currents are vector-
like and may be written

�JLµ = �JRµ = Qf
↵

2⇡
⇧
�
q2,mf
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�
. (40)

At renormalization scale µ in the MS scheme, the form factor ⇧ is
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and corresponds to vacuum polarization in QED [97–101].
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- long distance effective electromagnetic 
coupling to neutrino (including “charge radius”)

- associated scale dependence of 4 Fermi 
operators 
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Charged current: scheme dependence and 
evanescent operator basis

3 Full theory: loop diagrams for two boson exchange

The diagrams involving Z exchange are IR and UV finite,
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Integrals involving � exchange are IR divergent. In dimensional regularization we encounter
nontrivial Dirac structure and e↵ects of evanescent operators. Explicitly,
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We will see below that the reduction in the last line of operator structures to the tree level
structure involves a scheme dependence. Suppressing the evanescent operators, the result is
expressed in terms of the scheme parameter a (e.g., a = �8 for the default scheme below).

3.1 Evanescent operator discussion

In general (for anticommuting �5) we may reduce the one-loop structures to the tree level
structure plus one other structure. For example,
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In general, the remaining structure takes the form,
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The O(✏) terms a↵ect finite parts of renormalized Greens functions. To determined them, we
must specify a basis in d 6= 4 in which to express the right hand side. To start, consider a basis
of Lorentz structures in d = 4. For example, a conventional basis for d = 4 tensor products in
the chiral-even sector (containing odd number of �µ) is: [3, 2]
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where E is an evanescent operator. The numbers fi and ai are determined by enforcing that
E projects to zero on the chosen basis. For the choie (15), we readily find
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would yield a di↵erent evanescent operator basis (for the present application, it is not conve-
nient to break up the vector and axial vector pieces in such a basis).

4 Full theory: counterterms

Adding counterterms to the tree-level diagrams, we have
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(with conventional vector/axial-vector basis)
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Figure 4: QED vertex correction to elastic neutrino-electron scattering in e↵ective theory.

3.1 QED vertex correction

We consider one-loop virtual corrections in elastic (anti-)neutrino-electron scattering ⌫`e ! ⌫`e (⌫̄`e !

⌫̄`e). Within the Standard Model, the vertex correction is given by the diagrams in Figure 3, while only
the single diagram in Figure 4 contributes in the e↵ective theory. The usual field renormalization factors
must be applied to external legs.

First, we evaluate the one-loop vertex correction to the matrix element of left-handed (L) and right-
handed (R) charged lepton currents JL,Rµ = ē (p0) �µPL,Re (p) from Eq. (12). We perform the integration
in d = 4� 2" dimensions of space-time to regularize the ultraviolet divergence:
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where k/ ⌘ kµ�µ for any four-vector k, ⇠� is the photon gauge parameter, and a is an arbitrary constant
associated with the photon mass regulator. The small photon mass � is introduced to regulate infrared
(IR) divergences. The corresponding field renormalization factor of external charged leptons is
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Neglecting Lorentz structures whose contractions with the neutrino current vanish at m⌫ = 0, the
resulting correction can be expressed as3
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ē
�
p0
�
�µe (p) ! ē
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�
p0
�
�µ�5e (p) +

↵
⇡
(f1 � f2) ē
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handed (R) charged lepton currents JL,Rµ = ē (p0) �µPL,Re (p) from Eq. (12). We perform the integration
in d = 4� 2" dimensions of space-time to regularize the ultraviolet divergence:

�JL,Rµ = �e2
ˆ

iddL

(2⇡)d
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ē
�
p0
�
�µ�5e (p) ! ē
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�
p0
�
�µ�5e (p) +

↵
⇡
(f1 � f2) ē
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- expressed in terms of vector current Dirac and 
Pauli form factors of the electron

in terms of form factors f1 and f2 and the additional currents jLµ and jRµ :
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Here �µ⌫ = i
2
[�µ, �⌫ ].

Using Eqs. (25) and (26), the UV finite and gauge-independent virtual correction is given in Eq. (29)
by one-loop QED form factors [95, 96]:
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which are expressed in terms of the recoil electron velocity � and the parameter ⇢:
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r
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The vertex correction (29) to the unpolarized cross section can be expressed as a sum of factorizable
and nonfactorizable terms:
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The factorizable correction is given by

�v = 2f1. (36)

The nonfactorizable term d�⌫`e!⌫`e
v,NF

is obtained by modifying kinematical factors Ii in Eqs. (14, 15) as
Ii ! Ii +
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The resulting vertex correction to the unpolarized cross section of Eq. (35) is in agreement with
Refs. [29, 37]. In the limit of massless electron, the Pauli form factor vanishes, f2 (�) ! 0, and the
correction becomes exactly factorizable.

3.2 Closed fermion loops: leptons and heavy quarks

In addition to the corrections involving virtual photons in Section 3.1, we must account for the corrections
with a closed fermion loop (so called “penguin” diagrams) of Figure 5. These corrections correspond to
the neutrino “charge radius” contribution and e↵ects of �-Z mixing in the Standard Model, cf. Figure 6.
They represent the EFT determination of the kinematical dependence of electroweak corrections, cf.
Refs. [25, 27].

In this Section, we consider the loop contribution from an arbitrary fermion with mass mf and charge

Qf (in units of the positive positron charge) and e↵ective left- and right-handed couplings cf
L
and cf

R
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by one-loop QED form factors [95, 96]:
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which are expressed in terms of the recoil electron velocity � and the parameter ⇢:
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r
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The vertex correction (29) to the unpolarized cross section can be expressed as a sum of factorizable
and nonfactorizable terms:
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�vd�

⌫`e!⌫`e
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+ d�⌫`e!⌫`e
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. (35)

The factorizable correction is given by

�v = 2f1. (36)

The nonfactorizable term d�⌫`e!⌫`e
v,NF

is obtained by modifying kinematical factors Ii in Eqs. (14, 15) as
Ii ! Ii +
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⇡ f2�
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�vIL = �vIR =
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IL + IR �
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� ILR. (38)

The resulting vertex correction to the unpolarized cross section of Eq. (35) is in agreement with
Refs. [29, 37]. In the limit of massless electron, the Pauli form factor vanishes, f2 (�) ! 0, and the
correction becomes exactly factorizable.

3.2 Closed fermion loops: leptons and heavy quarks

In addition to the corrections involving virtual photons in Section 3.1, we must account for the corrections
with a closed fermion loop (so called “penguin” diagrams) of Figure 5. These corrections correspond to
the neutrino “charge radius” contribution and e↵ects of �-Z mixing in the Standard Model, cf. Figure 6.
They represent the EFT determination of the kinematical dependence of electroweak corrections, cf.
Refs. [25, 27].

In this Section, we consider the loop contribution from an arbitrary fermion with mass mf and charge

Qf (in units of the positive positron charge) and e↵ective left- and right-handed couplings cf
L
and cf

R
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Figure 6: Long-range dynamics in elastic neutrino-electron scattering in the Standard Model: �-Z mixing
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respectively, as in Eqs. (12) and (23). Note that the coupling cf
L
for charged leptons (f = `) depends

on the neutrino flavor. This perturbative treatment applies to loops involving charged leptons or heavy
quarks (mf � ⇤QCD). Light quarks require a nonperturbative treatment, as discussed in Section 3.3
below. Starting from the nf = 4 flavor theory discussed in Section 2.3, we treat the charm quark as heavy
and the up, down and strange quarks as light.
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and does not depend on the photon gauge. Corrections to either left- or right-handed currents are vector-
like and may be written
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and corresponds to vacuum polarization in QED [97–101].
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A QCD correction to QED vacuum polarization

For quark loop contributions in Section 3.2, we include the leading QCD correction due to one exchanged
gluon inside the quark loop. This correction modifies the form factor ⇧ in Eq. (41) as ⇧ ! ⇧ + ⇧QCD

with ⇧QCD from Refs. [102–105]:9
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where ↵s is a strong coupling constant, ⇣ (s) denotes the Riemann zeta functions and the function V (r)
is given by (for spacelike momentum transfer, r < 0)

V (r) =

r
1�

1

r

 
8

3

✓
r +

1

2

◆ 
Li2
�
r2�
�
� Li2

�
r4�
�
+ ln

�64 (1� r)2 r

r3+
ln r+

!
� 2

✓
r +

3

2

◆
ln r+

!

+ 4

✓
r �

1

4r

◆✓
2Li3

�
r2�
�
� Li3

�
r4�
�
+

8

3

�
Li2
�
r2�
�
� Li2

�
r4�
��

ln r+

◆
+

13

6
+

⇣ (3)

r

+
16

3

✓
r �

1

4r

◆
ln

8(1� r)
p
�r

r3+
ln2 r+ � 8

✓
r �

1

6
�

7

48r

◆
ln2 r+, (145)

with notations r± =
p
1� r ± r. As discussed at the end of Section 3.2, the relevant limit for neutrino-

electron scattering is �q2 ! 0, corresponding with
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For practical evaluation of c-quark contribution, we take the well-convergent expression in terms of
MS quark mass m̂c from Refs. [108, 129–131]:
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electron scattering is �q2 ! 0, corresponding with
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For practical evaluation of c-quark contribution, we take the well-convergent expression in terms of
MS quark mass m̂c from Refs. [108, 129–131]:
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where nf = 4 denotes the number of active quarks. The correction of order ↵2
s in Eq. (147) does not

change our results within significant digits.

B Triple-di↵erential distribution

We evaluate the bremsstrahlung cross section following Ref. [22]. For the electron angle distributions, we
introduce the four-vector l:
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⌘
, (148)

with the laboratory frame values:
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� 2!�E0 cos ✓e. (150)

Note the di↵erence between electron scattering angle in the elastic process (⇥e of Eq. (6)) and in the
scattering with radiation (✓e).

The triple-di↵erential cross section w.r.t. electron angle, electron energy and photon energy is given
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light quark penguins

- q2 ≫ ΛQCD2 a very bad approximation for 
kinematics of ν-e scattering 

- in fact q2 ≪ ΛQCD2: evaluate at q2 =0 (plus 
controlled corrections) 

- in contrast to HVP in (g-2)μ, need mixed I3-Q 
correlator 

The resulting “dynamical” correction to the unpolarized cross section, d�⌫`e!⌫`e
dyn

, can be expressed in
the following form:
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The contribution from three light flavors d�⌫`e!⌫`e
dyn, uds is discussed below in Section 3.3. The reduced cross

section d�̃⌫`e!⌫`e
dyn, f is obtained by replacing ⌫`e couplings in Eqs. (14, 15) as
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The sum in Eq. (197) extends over all charged leptons (e, µ, ⌧) and heavy quarks (c) in the theory (a
factor Nc = 3 is obtained in the sum over colors for heavy quarks). We also include QCD corrections due
to exchanged gluons inside the quark loop; see Refs. [102–105] and Appendix A for exact expressions.

The momentum transfer in elastic neutrino-electron scattering is suppressed by the electron mass,

0  �q2 < 2m!. (46)

For neutrino beam energies smaller than 10 GeV, this implies |q2| . 0.01 GeV2. Consequently, the
contribution of loops with heavy quarks can be well approximated substituting ⇧

�
q2, mf

�
! ⇧ (0, mf ).

3.3 Light-quark contribution

At small q2, QCD perturbation theory cannot be applied to evaluate the light-quark contribution in
Figure 5. We instead evaluate this contribution by relating it to measured experimental quantities.

For GeV energy neutrino beams, momenta in the range (46) are small compared to hadronic mass scales
and we thus evaluate the relevant hadronic tensor at q2 = 0. Neglecting NLO electroweak corrections to
the quark coe�cients of Eqs. (24), the light-quark contribution in Eq. (197) may be written,
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The reduced cross section d�̃⌫`e!⌫`e
dyn, uds is obtained replacing ⌫`e couplings in Eqs. (14, 15) as
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The quantity ⇧�� is defined by the vacuum correlation function,
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where Jµ
3
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P

q T
3
q q̄�

µq is (the third component of) the quark isospin current. The current-current

correlation functions ⇧̂(3)

ij (0) are evaluated at q2 = 0 for nf = 3 flavors, in the MS scheme.
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Unlike the light-quark contribution to the photon propagator, involving only ⇧̂�� , the correction to
neutral current neutrino-electron scattering involves also ⇧̂3� , and cannot be directly related to the total

hadron production cross section in e+e� collisions. However, an approximate relation between ⇧̂(3)

�� and

⇧̂(3)

3� holds in the limit of SU(3)f flavor symmetry for three light quarks [106, 107]. In general, the flavor
sums read

⇧̂(3)
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X
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QiQj⇧
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4

9
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1

9
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1

9
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�
4

9
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�
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9
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9
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X
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i Qj⇧
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3
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3
⇧ss

�⇧ud
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2

3
⇧ds

◆
. (52)

SU(3)f symmetry implies ⇧uu = ⇧dd = ⇧ss and ⇧ud = ⇧us = ⇧ds, and consequently, the simple rela-

tion [106] ⇧̂(3)

3� (0) ⇡ ⇧̂(3)

�� (0). This allows us to express the entire light-quark contribution to the unpolar-

ized cross section d�⌫`e!⌫`e
uds

in terms of the single observable ⇧̂(3)

�� (0).
For numerical evaluation, we use the dispersive analysis of e+e� cross section data and measurements

of hadronic ⌧ decays combined with a model of the high-energy contribution in Refs. [108–110],

⇧̂(3)

�� (0)
��
µ=2GeV

= 3.597(21) . (53)

For comparison to the SU(3)f symmetry approximation, we may consider an alternative SU(2)f ansatz
that sets ⇧uu = ⇧dd, ⇧ss = 0 and neglects disconnected, OZI-suppressed, terms, ⇧ud = ⇧us = ⇧ds = 0.

The flavor sums (51) and (52) then yield ⇧̂(3)

3� = 9⇧̂(3)

�� /10, only a 10% correction to the SU(3)f symmetry
limit. In the final error budget, we consider a more conservative 20% uncertainty on this relation,

⇧̂(3)

3� (0) = (1± 0.2) ⇧̂(3)

�� (0) . (54)

Renormalization scale dependence of the light-quark contribution (47) is perturbatively calculable. For
µ 6= 2GeV, the additional correction corresponds with 3⇧ (0, mf = 2 GeV) of Eq. (41) for each quark
(accounting for Nc = 3 quark colors).

4 Real photon emission

Section 4.1 provides basic expressions for one-photon bremsstrahlung. We then study relevant di↵erential
observables accounting for both soft and hard photons. We start with the electron energy, electron angle,
and photon energy triple-di↵erential cross section in Section 4.2. Integrating over one energy variable, we
obtain double-di↵erential distributions in Sections 4.3 and 4.4. The double-di↵erential cross section w.r.t.
two energy variables is described in Section 4.5. We provide the distribution w.r.t. photon energy and
photon angle in Section 4.6. Integrating it over the photon angle, we provide the photon energy spectrum
in Section 4.7. Finally, we discuss the real soft-photon correction to elastic neutrino-electron scattering
and present electron and electromagnetic energy spectra in Sections 4.8 and 4.9, respectively. We also
provide the absolute scattering cross section in Section 4.10. Throughout this Section 4, we present all
expressions in the limit of small electron mass, and provide expressions for general mass in the Appendix.
For the energy spectra in Sections 4.8 and 4.9, we provide a general discussion of momentum regions at
arbitrary mass, but present the massless limit and relegate details to the Appendix.

4.1 Radiation of one photon

The one-photon bremsstrahlung amplitude T1� , cf. Figure 7, contains terms corresponding to radiation
from the initial electron T1�

i and from the final electron T1�
f :

T1� = T1�
i +T1�

f . (55)
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i +T1�

f . (55)
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Unlike the light-quark contribution to the photon propagator, involving only ⇧̂�� , the correction to
neutral current neutrino-electron scattering involves also ⇧̂3� , and cannot be directly related to the total

hadron production cross section in e+e� collisions. However, an approximate relation between ⇧̂(3)

�� and

⇧̂(3)

3� holds in the limit of SU(3)f flavor symmetry for three light quarks [106, 107]. In general, the flavor
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SU(3)f symmetry implies ⇧uu = ⇧dd = ⇧ss and ⇧ud = ⇧us = ⇧ds, and consequently, the simple rela-

tion [106] ⇧̂(3)

3� (0) ⇡ ⇧̂(3)

�� (0). This allows us to express the entire light-quark contribution to the unpolar-

ized cross section d�⌫`e!⌫`e
uds

in terms of the single observable ⇧̂(3)

�� (0).
For numerical evaluation, we use the dispersive analysis of e+e� cross section data and measurements

of hadronic ⌧ decays combined with a model of the high-energy contribution in Refs. [108–110],

⇧̂(3)

�� (0)
��
µ=2GeV

= 3.597(21) . (53)

For comparison to the SU(3)f symmetry approximation, we may consider an alternative SU(2)f ansatz
that sets ⇧uu = ⇧dd, ⇧ss = 0 and neglects disconnected, OZI-suppressed, terms, ⇧ud = ⇧us = ⇧ds = 0.

The flavor sums (51) and (52) then yield ⇧̂(3)

3� = 9⇧̂(3)

�� /10, only a 10% correction to the SU(3)f symmetry
limit. In the final error budget, we consider a more conservative 20% uncertainty on this relation,

⇧̂(3)

3� (0) = (1± 0.2) ⇧̂(3)

�� (0) . (54)

Renormalization scale dependence of the light-quark contribution (47) is perturbatively calculable. For
µ 6= 2GeV, the additional correction corresponds with 3⇧ (0, mf = 2 GeV) of Eq. (41) for each quark
(accounting for Nc = 3 quark colors).

4 Real photon emission

Section 4.1 provides basic expressions for one-photon bremsstrahlung. We then study relevant di↵erential
observables accounting for both soft and hard photons. We start with the electron energy, electron angle,
and photon energy triple-di↵erential cross section in Section 4.2. Integrating over one energy variable, we
obtain double-di↵erential distributions in Sections 4.3 and 4.4. The double-di↵erential cross section w.r.t.
two energy variables is described in Section 4.5. We provide the distribution w.r.t. photon energy and
photon angle in Section 4.6. Integrating it over the photon angle, we provide the photon energy spectrum
in Section 4.7. Finally, we discuss the real soft-photon correction to elastic neutrino-electron scattering
and present electron and electromagnetic energy spectra in Sections 4.8 and 4.9, respectively. We also
provide the absolute scattering cross section in Section 4.10. Throughout this Section 4, we present all
expressions in the limit of small electron mass, and provide expressions for general mass in the Appendix.
For the energy spectra in Sections 4.8 and 4.9, we provide a general discussion of momentum regions at
arbitrary mass, but present the massless limit and relegate details to the Appendix.

4.1 Radiation of one photon

The one-photon bremsstrahlung amplitude T1� , cf. Figure 7, contains terms corresponding to radiation
from the initial electron T1�

i and from the final electron T1�
f :

T1� = T1�
i +T1�

f . (55)
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Unlike the light-quark contribution to the photon propagator, involving only ⇧̂�� , the correction to
neutral current neutrino-electron scattering involves also ⇧̂3� , and cannot be directly related to the total
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SU(3)f symmetry implies ⇧uu = ⇧dd = ⇧ss and ⇧ud = ⇧us = ⇧ds, and consequently, the simple rela-

tion [106] ⇧̂(3)

3� (0) ⇡ ⇧̂(3)

�� (0). This allows us to express the entire light-quark contribution to the unpolar-

ized cross section d�⌫`e!⌫`e
uds

in terms of the single observable ⇧̂(3)

�� (0).
For numerical evaluation, we use the dispersive analysis of e+e� cross section data and measurements

of hadronic ⌧ decays combined with a model of the high-energy contribution in Refs. [108–110],

⇧̂(3)
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µ=2GeV

= 3.597(21) . (53)

For comparison to the SU(3)f symmetry approximation, we may consider an alternative SU(2)f ansatz
that sets ⇧uu = ⇧dd, ⇧ss = 0 and neglects disconnected, OZI-suppressed, terms, ⇧ud = ⇧us = ⇧ds = 0.

The flavor sums (51) and (52) then yield ⇧̂(3)

3� = 9⇧̂(3)

�� /10, only a 10% correction to the SU(3)f symmetry
limit. In the final error budget, we consider a more conservative 20% uncertainty on this relation,
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Renormalization scale dependence of the light-quark contribution (47) is perturbatively calculable. For
µ 6= 2GeV, the additional correction corresponds with 3⇧ (0, mf = 2 GeV) of Eq. (41) for each quark
(accounting for Nc = 3 quark colors).

4 Real photon emission

Section 4.1 provides basic expressions for one-photon bremsstrahlung. We then study relevant di↵erential
observables accounting for both soft and hard photons. We start with the electron energy, electron angle,
and photon energy triple-di↵erential cross section in Section 4.2. Integrating over one energy variable, we
obtain double-di↵erential distributions in Sections 4.3 and 4.4. The double-di↵erential cross section w.r.t.
two energy variables is described in Section 4.5. We provide the distribution w.r.t. photon energy and
photon angle in Section 4.6. Integrating it over the photon angle, we provide the photon energy spectrum
in Section 4.7. Finally, we discuss the real soft-photon correction to elastic neutrino-electron scattering
and present electron and electromagnetic energy spectra in Sections 4.8 and 4.9, respectively. We also
provide the absolute scattering cross section in Section 4.10. Throughout this Section 4, we present all
expressions in the limit of small electron mass, and provide expressions for general mass in the Appendix.
For the energy spectra in Sections 4.8 and 4.9, we provide a general discussion of momentum regions at
arbitrary mass, but present the massless limit and relegate details to the Appendix.

4.1 Radiation of one photon

The one-photon bremsstrahlung amplitude T1� , cf. Figure 7, contains terms corresponding to radiation
from the initial electron T1�

i and from the final electron T1�
f :

T1� = T1�
i +T1�

f . (55)
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Unlike the light-quark contribution to the photon propagator, involving only ⇧̂�� , the correction to
neutral current neutrino-electron scattering involves also ⇧̂3� , and cannot be directly related to the total

hadron production cross section in e+e� collisions. However, an approximate relation between ⇧̂(3)

�� and
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3� holds in the limit of SU(3)f flavor symmetry for three light quarks [106, 107]. In general, the flavor
sums read
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SU(3)f symmetry implies ⇧uu = ⇧dd = ⇧ss and ⇧ud = ⇧us = ⇧ds, and consequently, the simple rela-

tion [106] ⇧̂(3)

3� (0) ⇡ ⇧̂(3)

�� (0). This allows us to express the entire light-quark contribution to the unpolar-

ized cross section d�⌫`e!⌫`e
uds

in terms of the single observable ⇧̂(3)

�� (0).
For numerical evaluation, we use the dispersive analysis of e+e� cross section data and measurements

of hadronic ⌧ decays combined with a model of the high-energy contribution in Refs. [108–110],
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= 3.597(21) . (53)

For comparison to the SU(3)f symmetry approximation, we may consider an alternative SU(2)f ansatz
that sets ⇧uu = ⇧dd, ⇧ss = 0 and neglects disconnected, OZI-suppressed, terms, ⇧ud = ⇧us = ⇧ds = 0.

The flavor sums (51) and (52) then yield ⇧̂(3)

3� = 9⇧̂(3)

�� /10, only a 10% correction to the SU(3)f symmetry
limit. In the final error budget, we consider a more conservative 20% uncertainty on this relation,
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Renormalization scale dependence of the light-quark contribution (47) is perturbatively calculable. For
µ 6= 2GeV, the additional correction corresponds with 3⇧ (0, mf = 2 GeV) of Eq. (41) for each quark
(accounting for Nc = 3 quark colors).

4 Real photon emission

Section 4.1 provides basic expressions for one-photon bremsstrahlung. We then study relevant di↵erential
observables accounting for both soft and hard photons. We start with the electron energy, electron angle,
and photon energy triple-di↵erential cross section in Section 4.2. Integrating over one energy variable, we
obtain double-di↵erential distributions in Sections 4.3 and 4.4. The double-di↵erential cross section w.r.t.
two energy variables is described in Section 4.5. We provide the distribution w.r.t. photon energy and
photon angle in Section 4.6. Integrating it over the photon angle, we provide the photon energy spectrum
in Section 4.7. Finally, we discuss the real soft-photon correction to elastic neutrino-electron scattering
and present electron and electromagnetic energy spectra in Sections 4.8 and 4.9, respectively. We also
provide the absolute scattering cross section in Section 4.10. Throughout this Section 4, we present all
expressions in the limit of small electron mass, and provide expressions for general mass in the Appendix.
For the energy spectra in Sections 4.8 and 4.9, we provide a general discussion of momentum regions at
arbitrary mass, but present the massless limit and relegate details to the Appendix.

4.1 Radiation of one photon

The one-photon bremsstrahlung amplitude T1� , cf. Figure 7, contains terms corresponding to radiation
from the initial electron T1�

i and from the final electron T1�
f :

T1� = T1�
i +T1�

f . (55)
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Unlike the light-quark contribution to the photon propagator, involving only ⇧̂�� , the correction to
neutral current neutrino-electron scattering involves also ⇧̂3� , and cannot be directly related to the total

hadron production cross section in e+e� collisions. However, an approximate relation between ⇧̂(3)
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SU(3)f symmetry implies ⇧uu = ⇧dd = ⇧ss and ⇧ud = ⇧us = ⇧ds, and consequently, the simple rela-

tion [106] ⇧̂(3)

3� (0) ⇡ ⇧̂(3)

�� (0). This allows us to express the entire light-quark contribution to the unpolar-

ized cross section d�⌫`e!⌫`e
uds

in terms of the single observable ⇧̂(3)
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For numerical evaluation, we use the dispersive analysis of e+e� cross section data and measurements

of hadronic ⌧ decays combined with a model of the high-energy contribution in Refs. [108–110],
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For comparison to the SU(3)f symmetry approximation, we may consider an alternative SU(2)f ansatz
that sets ⇧uu = ⇧dd, ⇧ss = 0 and neglects disconnected, OZI-suppressed, terms, ⇧ud = ⇧us = ⇧ds = 0.

The flavor sums (51) and (52) then yield ⇧̂(3)

3� = 9⇧̂(3)

�� /10, only a 10% correction to the SU(3)f symmetry
limit. In the final error budget, we consider a more conservative 20% uncertainty on this relation,
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Renormalization scale dependence of the light-quark contribution (47) is perturbatively calculable. For
µ 6= 2GeV, the additional correction corresponds with 3⇧ (0, mf = 2 GeV) of Eq. (41) for each quark
(accounting for Nc = 3 quark colors).

4 Real photon emission

Section 4.1 provides basic expressions for one-photon bremsstrahlung. We then study relevant di↵erential
observables accounting for both soft and hard photons. We start with the electron energy, electron angle,
and photon energy triple-di↵erential cross section in Section 4.2. Integrating over one energy variable, we
obtain double-di↵erential distributions in Sections 4.3 and 4.4. The double-di↵erential cross section w.r.t.
two energy variables is described in Section 4.5. We provide the distribution w.r.t. photon energy and
photon angle in Section 4.6. Integrating it over the photon angle, we provide the photon energy spectrum
in Section 4.7. Finally, we discuss the real soft-photon correction to elastic neutrino-electron scattering
and present electron and electromagnetic energy spectra in Sections 4.8 and 4.9, respectively. We also
provide the absolute scattering cross section in Section 4.10. Throughout this Section 4, we present all
expressions in the limit of small electron mass, and provide expressions for general mass in the Appendix.
For the energy spectra in Sections 4.8 and 4.9, we provide a general discussion of momentum regions at
arbitrary mass, but present the massless limit and relegate details to the Appendix.

4.1 Radiation of one photon

The one-photon bremsstrahlung amplitude T1� , cf. Figure 7, contains terms corresponding to radiation
from the initial electron T1�

i and from the final electron T1�
f :

T1� = T1�
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f . (55)
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Unlike the light-quark contribution to the photon propagator, involving only ⇧̂�� , the correction to
neutral current neutrino-electron scattering involves also ⇧̂3� , and cannot be directly related to the total
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SU(3)f symmetry implies ⇧uu = ⇧dd = ⇧ss and ⇧ud = ⇧us = ⇧ds, and consequently, the simple rela-

tion [106] ⇧̂(3)

3� (0) ⇡ ⇧̂(3)

�� (0). This allows us to express the entire light-quark contribution to the unpolar-

ized cross section d�⌫`e!⌫`e
uds

in terms of the single observable ⇧̂(3)
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For numerical evaluation, we use the dispersive analysis of e+e� cross section data and measurements

of hadronic ⌧ decays combined with a model of the high-energy contribution in Refs. [108–110],
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For comparison to the SU(3)f symmetry approximation, we may consider an alternative SU(2)f ansatz
that sets ⇧uu = ⇧dd, ⇧ss = 0 and neglects disconnected, OZI-suppressed, terms, ⇧ud = ⇧us = ⇧ds = 0.

The flavor sums (51) and (52) then yield ⇧̂(3)
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�� /10, only a 10% correction to the SU(3)f symmetry
limit. In the final error budget, we consider a more conservative 20% uncertainty on this relation,
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Renormalization scale dependence of the light-quark contribution (47) is perturbatively calculable. For
µ 6= 2GeV, the additional correction corresponds with 3⇧ (0, mf = 2 GeV) of Eq. (41) for each quark
(accounting for Nc = 3 quark colors).

4 Real photon emission

Section 4.1 provides basic expressions for one-photon bremsstrahlung. We then study relevant di↵erential
observables accounting for both soft and hard photons. We start with the electron energy, electron angle,
and photon energy triple-di↵erential cross section in Section 4.2. Integrating over one energy variable, we
obtain double-di↵erential distributions in Sections 4.3 and 4.4. The double-di↵erential cross section w.r.t.
two energy variables is described in Section 4.5. We provide the distribution w.r.t. photon energy and
photon angle in Section 4.6. Integrating it over the photon angle, we provide the photon energy spectrum
in Section 4.7. Finally, we discuss the real soft-photon correction to elastic neutrino-electron scattering
and present electron and electromagnetic energy spectra in Sections 4.8 and 4.9, respectively. We also
provide the absolute scattering cross section in Section 4.10. Throughout this Section 4, we present all
expressions in the limit of small electron mass, and provide expressions for general mass in the Appendix.
For the energy spectra in Sections 4.8 and 4.9, we provide a general discussion of momentum regions at
arbitrary mass, but present the massless limit and relegate details to the Appendix.

4.1 Radiation of one photon

The one-photon bremsstrahlung amplitude T1� , cf. Figure 7, contains terms corresponding to radiation
from the initial electron T1�

i and from the final electron T1�
f :
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f . (55)
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Unlike the light-quark contribution to the photon propagator, involving only ⇧̂�� , the correction to
neutral current neutrino-electron scattering involves also ⇧̂3� , and cannot be directly related to the total
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SU(3)f symmetry implies ⇧uu = ⇧dd = ⇧ss and ⇧ud = ⇧us = ⇧ds, and consequently, the simple rela-

tion [106] ⇧̂(3)

3� (0) ⇡ ⇧̂(3)

�� (0). This allows us to express the entire light-quark contribution to the unpolar-

ized cross section d�⌫`e!⌫`e
uds

in terms of the single observable ⇧̂(3)

�� (0).
For numerical evaluation, we use the dispersive analysis of e+e� cross section data and measurements

of hadronic ⌧ decays combined with a model of the high-energy contribution in Refs. [108–110],
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For comparison to the SU(3)f symmetry approximation, we may consider an alternative SU(2)f ansatz
that sets ⇧uu = ⇧dd, ⇧ss = 0 and neglects disconnected, OZI-suppressed, terms, ⇧ud = ⇧us = ⇧ds = 0.

The flavor sums (51) and (52) then yield ⇧̂(3)

3� = 9⇧̂(3)

�� /10, only a 10% correction to the SU(3)f symmetry
limit. In the final error budget, we consider a more conservative 20% uncertainty on this relation,
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Renormalization scale dependence of the light-quark contribution (47) is perturbatively calculable. For
µ 6= 2GeV, the additional correction corresponds with 3⇧ (0, mf = 2 GeV) of Eq. (41) for each quark
(accounting for Nc = 3 quark colors).

4 Real photon emission

Section 4.1 provides basic expressions for one-photon bremsstrahlung. We then study relevant di↵erential
observables accounting for both soft and hard photons. We start with the electron energy, electron angle,
and photon energy triple-di↵erential cross section in Section 4.2. Integrating over one energy variable, we
obtain double-di↵erential distributions in Sections 4.3 and 4.4. The double-di↵erential cross section w.r.t.
two energy variables is described in Section 4.5. We provide the distribution w.r.t. photon energy and
photon angle in Section 4.6. Integrating it over the photon angle, we provide the photon energy spectrum
in Section 4.7. Finally, we discuss the real soft-photon correction to elastic neutrino-electron scattering
and present electron and electromagnetic energy spectra in Sections 4.8 and 4.9, respectively. We also
provide the absolute scattering cross section in Section 4.10. Throughout this Section 4, we present all
expressions in the limit of small electron mass, and provide expressions for general mass in the Appendix.
For the energy spectra in Sections 4.8 and 4.9, we provide a general discussion of momentum regions at
arbitrary mass, but present the massless limit and relegate details to the Appendix.

4.1 Radiation of one photon

The one-photon bremsstrahlung amplitude T1� , cf. Figure 7, contains terms corresponding to radiation
from the initial electron T1�

i and from the final electron T1�
f :
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f . (55)
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Figure 7: One-photon bremsstrahlung in elastic neutrino-electron scattering.

The amplitude T1�
i is obtained from the tree-level amplitude with the substitution
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where k� is a photon momentum and "⇤⇢ is the photon polarization vector. The amplitude T1�
f is obtained

from the tree-level amplitude with the substitution

ē
�
p0
�
! e"⇤⇢ē

�
p0
�
�⇢

p/ 0 + k/ � +m0

(p0 + k�)
2
�m02

. (57)

Evaluating the spin-averaged squared matrix element,
P
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|T1�
|
2, we obtain for the bremsstrahlung

cross sections:
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ĨR + c2RĨL + c⌫`e

L
cRĨ
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where terms Ĩi contain the phase-space integration:
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�
p0
�
�⇢

p/ 0 + k/ � +m0

(p0 + k�)
2
�m02

. (57)

Evaluating the spin-averaged squared matrix element,
P
spin

|T1�
|
2, we obtain for the bremsstrahlung

cross sections:

d�⌫`e!⌫`e�
LO

=
↵

4⇡

m!

⇡3

h�
c⌫`e
L

�2
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Regions decomposition
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and does not depend on the unphysical parameters " and �. We remark that although individual correc-
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the complete cross-section correction is free from such Sudakov double logarithms [115, 116]. In Ap-
pendix H, we obtain the remaining nonfactorizable piece d�⌫`e!⌫`e�
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from the region of hard photons

(k� � "), which contains d�⌫`e!⌫`e�
I,NF

as well as the contribution beyond the first factorizable terms in
Eqs. (61-63), integrating the electron angle and electron energy distribution over the variable f (equiva-
lent to the electron scattering angle ✓e), and retaining all electron mass terms.

The resulting correction to the electron energy spectrum reproduces the result of Ref. [25] in the
limit m ! 0, E0/! = const. Besides the closed fermion loop contribution of Sections 3.2 and 3.3, it is
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cos 8 cos ~, + sin 8 sin 3' cos ~, where 8 is the angle between p~ and f (see fig. 3), the 
integrations over ~, and cos ~, in eq. (B.22) can be evaluated exactly leading to a fairly 
complicated function of ~/. The resultant ~ integral in eq. (B.22) is rather involved 
but it can be carried out analytically in the ER regime by means of judicious changes 
of variables. In this way we obtain 

( N i N ( k ~ ) ) i i  = --'/r2(pl'P2) 2 l d z ( l - z ) 2  2in 22E~'Z ½1n 2 
ml ml ~ 

z l n / - - ~ 2 2  )ln - l - I n  z ( 1 - z )  In2 1 - z 1 z ' 

(B.23) 
Adding eqs. (B.9), (B.17) and (B.23) we find in the ER regime 

RIN = --qr2(pl "p2)2 foldz(1-- z)2{21n( ~m2in)(ln 2E~zm, 2 1) 
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/ 
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/ 

/ -,, 
k 

I ~ ' x \ .  I ~ NNNNi 

( B . 2 4 )  

Fig. 3. Angles involved in the integrations over region II (appendix B). Here f = p i p~ and p i, P~ and k 
are the momenta of the initial neutrino, final electron and ohoton in the lab frame. 
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- cancellation of Sudakov logarithms in 
electron energy spectrum 

The factorizable correction �I is obtained from the first, factorizable, terms in Eqs. (61-63), evaluating
kinematical factors IL, IR, IL

R
in the kinematics of elastic 2 ! 2 process:
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✓
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2
ln

1 + �

1� �

◆
ln

2 (1 + �) "

�m (1 + cos �0)
, (103)

where the angle �0 is given by
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� �2E02
� l2

0

2�E0l0
. (104)

The nonfactorizable part d�⌫`e!⌫`e�
I,NF

is discussed below. The bremsstrahlung contribution from region II
can be expressed in factorizable form:
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Consequently, the complete electron energy spectrum is given by
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and does not depend on the unphysical parameters " and �. We remark that although individual correc-
tions contain double logarithms, i.e.,
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the complete cross-section correction is free from such Sudakov double logarithms [115, 116]. In Ap-
pendix H, we obtain the remaining nonfactorizable piece d�⌫`e!⌫`e�

NF
from the region of hard photons

(k� � "), which contains d�⌫`e!⌫`e�
I,NF

as well as the contribution beyond the first factorizable terms in
Eqs. (61-63), integrating the electron angle and electron energy distribution over the variable f (equiva-
lent to the electron scattering angle ✓e), and retaining all electron mass terms.

The resulting correction to the electron energy spectrum reproduces the result of Ref. [25] in the
limit m ! 0, E0/! = const. Besides the closed fermion loop contribution of Sections 3.2 and 3.3, it is
represented by the following substitutions in Eqs. (58, 59):
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with functions f� (x) , f+ (x) [25], and f�
+ (x) derived first in the present paper:5
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We observe that in exactly forward kinematics at electron threshold, when E0 = m, the energy
spectrum is given by the nonfactorizable contribution from the electromagnetic vertex and closed fermion
loops:
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with f2(0) = 1/2 in Eqs. (35, 37, 38) and ⇧ (0,mf ) , ⇧̂(3)

�� (0) , ⇧̂(3)

3� (0) of Eqs. (197, 47). This equation
provides a universal limit for electron energy and electromagnetic energy spectra.

The electron energy spectrum has the following logarithmically-divergent behavior near its endpoint
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as determined by infrared logarithms in Eqs. (36, 96).

4.9 Electromagnetic energy spectrum

We evaluate the bremsstrahlung cross section w.r.t. the sum of electron and photon energies considering
the final neutrino energy spectrum instead of the electron energy spectrum [22], see Section 4.4 for
explanations. For the neutrino scattering angle distributions, we introduce the four-vector l̃:

l̃ = k + p� k0 =
⇣
l̃0,

~̃f
⌘
, (117)

with the laboratory frame values:

l̃0 = EEM, (118)

f̃2 = |
~̃f |2 = !2 + !02

� 2!!0 cos ✓⌫ . (119)

Note the di↵erence between the neutrino scattering angle in the elastic process (⇥⌫ of Eq. (3)) and in the
scattering with radiation (✓⌫).

Below the endpoint of maximal electron energy, EEM  E0
0
= m + 2!2

m+2! , we can use the same
integration technique as in Ref. [22]. Above the endpoint, the photon energy is bounded from below
k� � EEM � E0

0
and there is no corresponding elastic process and no contribution from the soft region.

We consider these two regions separately in the following.
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5 Illustrative results

Our results may be used to compute absolute and di↵erential cross sections for neutrino-electron scattering
over a broad range of energies and experimental setups. We focus on the application to flux normalization
at accelerator-based neutrino experiments in this Section.

5.1 Total cross section: energy dependence and error analysis
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Figure 8: Total cross section in the (anti-)neutrino-electron scattering processes ⌫µe ! ⌫µe(X�), ⌫ee !

⌫ee(X�), ⌫̄µe ! ⌫̄µe(X�) and ⌫̄ee ! ⌫̄ee(X�) as a function of (anti-)neutrino beam energy.

The total cross sections for ⌫µe, ⌫ee, ⌫̄µe and ⌫̄ee scattering are shown in Figure 8. For ! � m, cross
sections grow approximately linearly with neutrino beam energy. As a benchmark point, we determine at
! = 1 GeV:

�[⌫µe ! ⌫µe(�)] =
⇥
1.5724⇥ 10�42 cm2

⇤
⇥

⇥
1± 0.0037had ± 0.0003EW ± 0.00007pert

⇤
. (138)

The cross section is evaluated using four-flavor QCD, with running QED and QCD couplings ↵(µ) and
↵s(µ) evaluated using 2 and 5 loop running, respectively, with ↵(2GeV) = 1/133.307 and ↵s(2GeV) =

0.3065. The uncertainties in Eq. (138) are from: (i) the hadronic parameter ⇧̂(3)

3� (0)/⇧̂
(3)

�� (0) in Eq. (54)

and from ⇧̂(3)

�� (0) in Eq. (53);6 (ii) from uncertainties in the four-fermion operator coe�cients c⌫``
0

L
, cR

in Table 1; and (iii) from higher-order perturbative corrections, estimated by varying renormalization
scale µ2

0
/2 < µ2 < 2µ2

0
, where µ0 = 2GeV. For simplicity, we evaluate the light-quark contribution

of Eq. (47) neglecting NLO electroweak corrections and renormalization group corrections to the four-
fermion operator coe�cients, taking for definiteness GF = 1.166379⇥ 10�5GeV�2 and sin2 ✓W = 0.23112

6
The error of ⇧̂

(3)
�� (0) in Eq. (53) contributes ±0.00006.
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Table 2: Relative errors of the total neutrino-electron scattering cross section.

light-quark correction e↵ective couplings higher orders

⌫µe ! ⌫µe(X�) 0.37 % 0.034 % . 0.008 %

⌫̄µe ! ⌫̄µe(X�) 0.31 % 0.029 % . 0.005 %

⌫ee ! ⌫ee(X�) 0.26 % 0.024 % . 0.007 %

⌫̄ee ! ⌫̄ee(X�) 0.36 % 0.033 % . 0.006 %

in Eqs. (47) and (48); it is straightforward to include these corrections, whose impact is given by the
few permille shift in the coe�cients [47], times the ⇠ 1% fractional contribution of light quarks to
the cross section. The charm-quark contribution in Eq. (197) is evaluated including the O(↵s) and
O(↵2

s) corrections from Appendix A and using the MS mass m̂c(2GeV) = 1.084 GeV (corresponding to
m̂c(m̂c) = 1.27(2)GeV [117]). The fractional uncertainty coming from the charm quark mass error is
⇡ 2 ⇥ 10�5 and is not displayed in Eq. (138), nor is the uncertainty of similar magnitude coming from
higher orders in GF expansion. The e-, µ- and ⌧ -lepton contributions in Eq. (197) are evaluated using
lepton pole masses and the complete kinematic dependence of ⇧(q2,m`) in Eq. (41).7

For ! � m, the relative cross section error is approximately constant, independent of neutrino energy.
Relative uncertainties on total cross sections from di↵erent sources are summarized in Table 2. The
dominant uncertainty from the light-quark contribution in di↵erential and absolute cross sections can be
expressed as8
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with the relative uncertainty ⌘ = (⇧̂(3)

3� (0) /⇧̂(3)

�� (0) � 1.0) ⇡ 0.2 and the substitution c⌫`e
L

$ cR in the
case of antineutrino scattering.

5.2 Electron and total electromagnetic energy spectra

Figures 9 and 10 display the typical size of the radiative corrections to energy spectra w.r.t. the final
electron energy (Ē = E0), and w.r.t. the total electromagnetic energy (i.e., the electron energy plus
photon energy, Ē = E0+k�). We consider muon type neutrinos and antineutrinos, the primary component
in the accelerator neutrino beam. In these Figures, we show the quantity � representing the radiative
correction normalized to the leading-order elastic cross section:

� =
d�⌫`e!⌫`e�

LO
+ d�⌫`e!⌫`e

NLO
� d�⌫`e!⌫`e

LO

d�⌫`e!⌫`e
LO

. (142)

The correction to the electromagnetic energy spectrum is relatively flat over a wide energy, whereas
the correction to the electron energy spectrum is logarithmically divergent below electron endpoint, cf.
Eq. (116). The logarithmic divergence of the electromagnetic energy spectrum above the electron end-
point, cf. Eq. (133), is not seen in Figure 9 due to the small size of the region in Section 4.9.2 compared

7
One can safely evaluate ⌧ -lepton contribution considering ⇧(0,m⌧ ) since |q2| ⌧ m2

⌧ .
8
It can be seen, cf. Eq. (140), that the muon antineutrino-electron scattering cross section is free from hadronic uncertainty,

and also e↵ective coupling uncertainty induced by cR, at the particular recoil antineutrino energy !̃:
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Figure 9: Radiative corrections to the neutrino-electron scattering process ⌫µe ! ⌫µe(X�) for two neutrino
beam energies ! = 1, 10GeV. The quantity � is defined in Eq. (142) and strongly depends on the MS scale
µ. Three curves for µ = µ0/

p
2, µ = µ0 and µ =

p
2µ0 with µ0 = 2 GeV are presented. The solid and

dashed-dotted curves correspond with electron spectrum, i.e., Ē = E0, dashed curves with electromagnetic
spectrum, i.e., Ē = E0 + k� . Uncertainties are not shown on this plot with a scale-dependent quantity.
Lower curves correspond to larger value of µ.

to the scale of the Figure. Both corrections start from the limit of Eq. (115) at Ē = m. Note that the
correction � depends on the renormalization scale µ since the numerator does not contain the leading-
order elastic process, rather just the virtual correction to it, leaving the scale dependence of the closed
fermion loops (Sections 3.2 and 3.3) without cancellations. The large renormalization scale dependence
in Figures 9 and 10 illustrates the cancellations occurring between LO and NLO in arriving at the total
cross section in Eq. (138). Other uncertainties are not shown in the figure.

5.3 Electron angular spectrum

In this Section, we consider the angular smearing of di↵erential cross sections. It can be presented as a
function of the variable X:

X = 2m

✓
1�

Ē

!

◆
, (143)

which becomes X ⇡ E0✓2e for (anti-)neutrinos of high energy in case of the electron energy spectrum. We
present the resulting NLO spectrum in Figures 11 and 12 for two (anti-)neutrino beam energies: ! = 1 GeV
and 10 GeV. Although the electromagnetic and electron energy spectra integrate to the same total cross
section, shape e↵ects induced by radiative corrections can potentially impact the calibration of neutrino
flux. For example, experimental cuts requiring a minimum observed energy will result in di↵erent numbers
of accepted events depending on which distribution (electromagnetic or electron energy) is chosen. In a
practical analysis, neither the electron spectrum nor the electromagnetic spectrum will perfectly represent
the experimental conditions, and the more general distributions presented elsewhere in this paper can be
used.
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Table 2: Relative errors of the total neutrino-electron scattering cross section.

light-quark correction e↵ective couplings higher orders

⌫µe ! ⌫µe(X�) 0.37 % 0.034 % . 0.008 %

⌫̄µe ! ⌫̄µe(X�) 0.31 % 0.029 % . 0.005 %

⌫ee ! ⌫ee(X�) 0.26 % 0.024 % . 0.007 %

⌫̄ee ! ⌫̄ee(X�) 0.36 % 0.033 % . 0.006 %

in Eqs. (47) and (48); it is straightforward to include these corrections, whose impact is given by the
few permille shift in the coe�cients [47], times the ⇠ 1% fractional contribution of light quarks to
the cross section. The charm-quark contribution in Eq. (197) is evaluated including the O(↵s) and
O(↵2

s) corrections from Appendix A and using the MS mass m̂c(2GeV) = 1.084 GeV (corresponding to
m̂c(m̂c) = 1.27(2)GeV [117]). The fractional uncertainty coming from the charm quark mass error is
⇡ 2 ⇥ 10�5 and is not displayed in Eq. (138), nor is the uncertainty of similar magnitude coming from
higher orders in GF expansion. The e-, µ- and ⌧ -lepton contributions in Eq. (197) are evaluated using
lepton pole masses and the complete kinematic dependence of ⇧(q2,m`) in Eq. (41).7

For ! � m, the relative cross section error is approximately constant, independent of neutrino energy.
Relative uncertainties on total cross sections from di↵erent sources are summarized in Table 2. The
dominant uncertainty from the light-quark contribution in di↵erential and absolute cross sections can be
expressed as8
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with the relative uncertainty ⌘ = (⇧̂(3)
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�� (0) � 1.0) ⇡ 0.2 and the substitution c⌫`e
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$ cR in the
case of antineutrino scattering.
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Figures 9 and 10 display the typical size of the radiative corrections to energy spectra w.r.t. the final
electron energy (Ē = E0), and w.r.t. the total electromagnetic energy (i.e., the electron energy plus
photon energy, Ē = E0+k�). We consider muon type neutrinos and antineutrinos, the primary component
in the accelerator neutrino beam. In these Figures, we show the quantity � representing the radiative
correction normalized to the leading-order elastic cross section:
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The correction to the electromagnetic energy spectrum is relatively flat over a wide energy, whereas
the correction to the electron energy spectrum is logarithmically divergent below electron endpoint, cf.
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point, cf. Eq. (133), is not seen in Figure 9 due to the small size of the region in Section 4.9.2 compared
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Figure 10: Same as Figure 9 for antineutrino-electron scattering process ⌫̄µe ! ⌫̄µe(X�). Uncertainties
are not shown on this plot with a scale-dependent quantity. Lower curves correspond to large value of µ
for Ē/! . 0.07� 0.1 and to smaller value of µ above.

Results comparing E0 and EEM distributions after averaging over typical experimental flux profiles
are collected in Appendix L.

6 Conclusions and outlook

In this work, we have presented analytical results for elastic (anti-)neutrino-electron scattering starting
from four-fermion e↵ective field theory. Total cross sections, the electron and electromagnetic energy
spectra as well as double- and triple-di↵erential cross sections were presented in a relatively compact
form. Our results can be applied to improve constraints of neutrino flux measurements via elastic neutrino-
electron scattering. All expressions were obtained for finite electron mass and can also be used in low
energy applications such as oscillation measurements with solar and reactor (anti-)neutrinos.

Next-to-leading order corrections with bremsstrahlung of one photon are typically of order few per-
cent and depend on the experimental setup. For instance, as discussed in Section 5.3, electron and
electromagnetic energy spectra di↵er significantly. Although these two spectra integrate to the same total
cross section, kinematical cuts can alter inferred flux constraints if radiative corrections are not matched
correctly to experimental conditions. Future precise measurements of the electron angular spectrum in
neutrino-electron scattering can provide energy-dependent neutrino flux constraints. Our results provide a
complete description of the kinematic dependence of radiative corrections needed to control uncertainties
in neutrino energy reconstruction.

We provided a complete error budget for neutrino-electron scattering observables. The light-quark
contribution to the radiative correction is the dominant source of uncertainty. We have expressed this
contribution in terms of well-defined Standard Model observables, independent of “constituent quark”

models used in previous treatments, and determined the relevant hadronic parameter, denoted ⇧̂(3)

3� (0),

using SU(3)f symmetry to relate it to the experimentally constrained parameter ⇧̂(3)

�� (0). To further
pin down the uncertainty of this light-quark contribution, one can evaluate closed fermion loop contri-
bution within the dispersion relation approach decomposing e+e� cross section data and measurements
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Figure 11: Energy spectrum in the neutrino-electron scattering ⌫µe ! ⌫µe(�), plotted as a function of
X = 2m(1 � Ē/!) for two neutrino beam energies ! = 1, 10GeV. The solid and dashed-dotted curves
correspond with electron spectrum, i.e., Ē = E0, dashed curves with electromagnetic spectrum, i.e.,
Ē = E0 + k� .

of hadronic ⌧ decays into flavor components [106, 107, 110, 118–120] or perform a calculation in lattice
QCD [121].

We note that due to the restrictive kinematics of neutrino-electron scattering (|q2| < 2m! for the
elastic process) the light-quark contribution enters as a single constant, representing the q2 ! 0 limit of
the relevant hadronic tensor. This single constant will also impact (and may be constrained by) other
low q2 processes such as coherent neutrino-nucleus scattering.

Besides its phenomenological relevance, the neutrino-electron scattering process provides an analyti-
cally calculable prototype for the more complicated case of neutrino-nucleus scattering [122]. In general,
radiative corrections can be decomposed (“factorized”) into soft and hard functions using e↵ective field
theory [123]. The soft functions depend on experimental configuration but are independent of hadronic
physics and describe universal large logarithms that are present in general kinematics. The hard functions
are independent of experimental configuration and describe hadronic physics. In neutrino-electron scat-
tering the analogous hard functions are perturbatively calculable whereas in neutrino-nucleus scattering
they must be parameterized and experimentally constrained.
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!

◆
⇡ Ee✓

2
e



Results

!26

- neutrino energy reconstruction

νμe  νμe(γ)

ω
-ω

re
c

ω
, %

0

1

2

3

4

ω, GeV
0 1 2 3 4 5

!rec =
m|~pe|

(Ee +m) cos ✓e � |~pe|
<latexit sha1_base64="p76fFLig3/95TiEm10uL5K4f+c8="></latexit>



Summary and 
Outlook

!27

- corrections large compared to anticipated 
experimental precision 

- theoretical uncertainty dominated by I3-Q 
HVP, target for lattice QCD

- milliradian angular resolution at DUNE should 
provide capability for neutrino energy 
reconstruction: smearing by radiative 
corrections must be included (cf. 1910.10996)

- extension to scattering on nucleons and nuclei: 
factorization into hard, soft, collinear, with hard 
functions parameterized and measured

Neutrino-electron scattering and radiative 
corrections


