## Neutrino-electron scattering and radiative corrections

RICHARD HILL, U. Kentucky and Fermilab
based on $1907.03379,1911.01493$ with O. Tomalak
cf. Fermilab W\&C seminar 11/15/19,
Tomalak+MINERvA+DUNE

NUSTEC meeting, 10-12 December 2019

- Motivation and v-e basics
- Four Fermi theory


## Outline

- Virtual corrections
- Real radiation
- Results
neutrino oscillation experiment is simple in conception:


## $\mathrm{V}_{\mathrm{e}}$ appearance from a $v_{\mu}$ beam


but difficult in practice: rely on theory to determine cross sections: e.g. $\sigma\left(\mathrm{v}_{\mathrm{e}}\right) / \sigma\left(\mathrm{v}_{\mu}\right)$ to a precision of $1 \%$

## $v_{e}$ appearance from $a v_{\mu}$ beam


but difficult in practice: rely on theory to determine cross sections: e.g. $\sigma\left(\mathrm{v}_{\mathrm{e}}\right) / \sigma\left(\mathrm{v}_{\mu}\right)$ to a precision of $1 \%$

but difficult in practice: rely on theory to determine cross sections: e.g. $\sigma\left(\mathrm{v}_{\mathrm{e}}\right) / \sigma\left(\mathrm{v}_{\mu}\right)$ to a precision of $1 \%$

- Phenomenologically important
powerful constraint on neutrino flux: absolute normalization (current) and energy dependence (future)
e.g. NUMI beam normalization: $7.5 \% \rightarrow 3.9 \%$
neutrino-electron scattering basics

MINERvA, 1906.00111

- Many features common to broader program of neutrino-nucleus scattering
- electroweak radiative corrections to four Fermi operator basis
- universal "hadronic penguin" contribution (dominates uncertainty in $v$-e)
- analytic point particle limit for hard function in general case (cf e-p 1605.02613)
- Kinematics
neutrino-electron scattering basics


$$
m_{e} \leq E_{e}^{\prime} \leq m_{e}+\frac{2 E_{\nu}^{2}}{m_{e}+2 E_{\nu}}
$$

$$
\cos \theta_{e}^{\prime}=\frac{m_{e}+E_{\nu}}{E_{\nu}} \sqrt{\frac{E_{e}^{\prime}-m_{e}}{E_{e}^{\prime}+m_{e}}}
$$

- near-forward scattering for $E_{e}{ }^{\prime}, E_{v} \gg m_{e}$
- can reconstruct $\mathrm{E}_{\mathrm{v}}$ from $\mathrm{E}_{\mathrm{e}}{ }^{\prime}, \theta_{\mathrm{e}}{ }^{\prime}$
- Cross section
- suppressed by lepton mass

$$
\sigma \sim \mathrm{GF}^{2} \mathrm{~s} \sim \mathrm{GF}^{2} \mathrm{~m}_{\mathrm{e}} \mathrm{E}_{\mathrm{v}}
$$

neutrino-electron scattering basics

$$
\frac{d \sigma}{d E_{e}^{\prime}}=\frac{m}{4 \pi}\left[c_{L}^{2} I_{L}+c_{R}^{2} I_{R}+c_{L} c_{R} I_{L R}\right]
$$

- tree level:

$$
\begin{array}{ll}
c_{L_{L}^{\prime \ell^{\prime}}}=2 \sqrt{2} \mathrm{G}_{\mathrm{F}}\left(\sin ^{2} \theta_{W}-\frac{1}{2}+\delta_{\text {el }}\right) & I_{L}=1 \\
c_{\mathrm{R}}=2 \sqrt{2} \mathrm{G}_{\mathrm{F}} \sin ^{2} \theta_{W} & I_{R}=\frac{E_{\nu}^{\prime 2}}{E_{\nu}^{2}}
\end{array}
$$



$$
I_{L R}=-\frac{m_{e}}{E_{\nu}}\left(1-\frac{E_{\nu}^{\prime}}{E_{\nu}}\right)
$$



Need: - absolute cross sections at $<1 \%$

- observable matched to detector (~EM versus e)
- corrections to venergy reconstruction
- one loop matching at EW scale
- include two-loop mixed QEDQCD corrections for leptonic operators
- neglect fermion masses except top quark
- subsequent high-order RG evolution to hadronic scales
(default $\mu=2 \mathrm{GeV}, \mathrm{n}_{\mathrm{f}}=4$ )



## Neutral current: matching to e.m. current operator

## Four Fermi theory



- long distance effective electromagnetic coupling to neutrino (including "charge radius")
- associated scale dependence of 4 Fermi operators


## Charged current: scheme dependence and evanescent operator basis

## Four Fermi theory



$$
\left\lvert\, \frac{m_{W}^{-2 \epsilon}}{\epsilon(1-\epsilon)} \frac{1}{d}\left\{-\left[Q_{\ell} Q_{u}+Q_{\nu} Q_{d}\right] \gamma^{\alpha} \gamma^{\beta} \gamma^{\mu} P_{L} \otimes \gamma_{\alpha} \gamma_{\beta} \gamma_{\mu} P_{L}\right.\right.
$$

$$
\left.+\left[Q_{\ell} Q_{d}+Q_{\nu} Q_{u}\right] \gamma^{\alpha} \gamma^{\beta} \gamma^{\mu} P_{L} \otimes \gamma_{\mu} P_{L} \gamma_{\beta} \gamma_{\alpha}\right\}
$$

$$
\gamma^{\alpha} \gamma^{\beta} \gamma^{\mu} P_{L} \otimes \gamma_{\mu} \gamma_{\beta} \gamma_{\alpha} P_{L}=\sum_{i}\left(f_{i}+a_{i} \epsilon\right) O_{i}+E+\mathcal{O}\left(\epsilon^{2}\right)
$$

$$
=(4-8 \epsilon) \gamma^{\mu} P_{L} \otimes \gamma_{\mu} P_{L}+E
$$

(with conventional vector/axial-vector basis)

- starting point for neutrino interaction phenomenology in current and next generation experiments

Four Fermi theory

- SM check on GF from EW precision measurements vs muon decay
- efficient separation of electroweak and hadronic effects
- scheme specification: (MS-bar, $\mu=2$
$\mathrm{GeV}, \mathrm{n}_{\mathrm{f}}=4$ and $\mathrm{a}=-8$ )


## vertex corrections

## Virtual corrections



$$
\begin{aligned}
\left(Z_{\ell}-1\right) \mathrm{J}_{\mu}^{\mathrm{L}, \mathrm{R}}+ & \delta \mathrm{J}_{\mu}^{\mathrm{L}, \mathrm{R}}=\frac{\alpha}{\pi}\left(f_{1} \mathrm{~J}_{\mu}^{\mathrm{L}, \mathrm{R}}+f_{2} \mathrm{j}_{\mu}^{\mathrm{L}, \mathrm{R}}\right) \\
\mathrm{j}_{\mu}^{\mathrm{L}} & =\frac{1}{2} \bar{e}\left(p^{\prime}\right)\left(\gamma_{\mu} \gamma_{5}+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m}\right) e(p) \\
\mathrm{j}_{\mu}^{\mathrm{R}} & =\frac{1}{2} \bar{e}\left(p^{\prime}\right)\left(-\gamma_{\mu} \gamma_{5}+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m}\right) e(p)
\end{aligned}
$$

- expressed in terms of vector current Dirac and Pauli form factors of the electron


## leptonic penguins

Virtual corrections


$$
\delta \mathrm{J}_{\mu}^{\mathrm{L}}=\delta \mathrm{J}_{\mu}^{\mathrm{R}}=Q_{f} \frac{\alpha}{2 \pi} \Pi\left(q^{2}, m_{f}\right)\left(\mathrm{J}_{\mu}^{\mathrm{L}}+\mathrm{J}_{\mu}^{\mathrm{R}}\right)
$$

- expressed in terms of QED vac. pol.

$$
\Pi\left(q^{2}, m_{f}\right)=\frac{1}{3} \ln \frac{\mu^{2}}{m_{f}^{2}}+\frac{5}{9}+\frac{4 m_{f}^{2}}{3 q^{2}}+\frac{1}{3}\left(1+\frac{2 m_{f}^{2}}{q^{2}}\right) \sqrt{1-\frac{4 m_{f}^{2}}{q^{2}}} \ln \frac{\sqrt{1-\frac{4 m_{f}^{2}}{q^{2}}}-1}{\sqrt{1-\frac{4 m_{f}^{2}}{q^{2}}}+1},
$$

## heavy quark penguins

$$
\Pi \rightarrow \Pi+\Pi^{\mathrm{QCD}}
$$

$$
\begin{aligned}
& \Pi^{\mathrm{QCD}}=\frac{\alpha_{s}}{3 \pi}\left(\ln \frac{\mu^{2}}{m_{f}^{2}}-4 \zeta(3)+\frac{55}{12}+\frac{4 m_{f}^{2}}{q^{2}} V_{1}\left(\frac{q^{2}}{4 m_{f}^{2}}\right)\right) \\
& \left.\Pi^{\mathrm{QCD}}\right|_{q^{2} \rightarrow-0}=\frac{\alpha_{s}}{3 \pi}\left(\ln \frac{\mu^{2}}{m_{f}^{2}}+\frac{15}{4}\right)
\end{aligned}
$$

- pole mass expansion poorly convergent, express as MS-bar mass

$$
\begin{aligned}
& \Pi=\frac{1}{3} \ln \frac{\mu^{2}}{\hat{m}_{c}^{2}}+\frac{\alpha s}{3 \pi}\left(-\ln \frac{\mu^{2}}{\hat{m}_{c}^{2}}+\frac{13}{12}\right) \\
& \quad+\frac{\alpha_{s}^{2}}{3 \pi^{2}}\left(\frac{655}{144} \zeta(3)-\frac{3847}{864}-\frac{5}{6} \ln \frac{\mu^{2}}{\hat{m}_{c}^{2}}-\frac{11}{8} \ln ^{2} \frac{\mu^{2}}{\hat{m}_{c}^{2}}+n_{f}\left(\frac{361}{1296}-\frac{1}{18} \ln \frac{\mu^{2}}{\hat{m}_{c}^{2}}+\frac{1}{12} \ln ^{2} \frac{\mu^{2}}{\hat{m}_{c}^{2}}\right)\right)
\end{aligned}
$$

## light quark penguins

- $q^{2} \gg$ QCD $^{2}$ a very bad approximation for kinematics of v -e scattering


## Virtual corrections

- in fact $\mathrm{q}^{2} \ll$ QCD $^{2}$ : evaluate at $\mathrm{q}^{2}=0$ (plus controlled corrections)
- in contrast to HVP in $(\mathrm{g}-2)_{\mu}$, need mixed $\mathrm{I}_{3}-\mathrm{Q}$ correlator

$$
\begin{aligned}
& \frac{\alpha}{\pi}\left(\hat{\Pi}_{3 \gamma}^{(3)}(0)-2 \sin ^{2} \theta_{W} \hat{\Pi}_{\gamma \gamma}^{(3)}(0)\right) \\
& \quad\left(q^{\mu} q^{\nu}-q^{2} g^{\mu \nu}\right) \Pi_{\gamma \gamma}\left(q^{2}\right)=4 i \pi^{2} \int \mathrm{~d}^{d} x e^{i q \cdot x}\langle 0| T\left\{J_{\gamma}^{\mu}(x) J_{\gamma}^{\nu}(0)\right\}|0\rangle \\
& \quad\left(q^{\mu} q^{\nu}-q^{2} g^{\mu \nu}\right) \Pi_{3 \gamma}\left(q^{2}\right)=4 i \pi^{2} \int \mathrm{~d}^{d} x e^{i q \cdot x}\langle 0| T\left\{J_{3}^{\mu}(x) J_{\gamma}^{\nu}(0)\right\}|0\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\Pi}_{\gamma \gamma}^{(3)}=\sum_{i, j} Q_{i} Q_{j} \Pi^{i j}=\frac{4}{9} \Pi^{u u}+\frac{1}{9} \Pi^{d d}+\frac{1}{9} \Pi^{s s}-\frac{4}{9} \Pi^{u d}-\frac{4}{9} \Pi^{u s}+\frac{2}{9} \Pi^{d s}, \\
& \hat{\Pi}_{3 \gamma}^{(3)}=\sum_{i, j} T_{i}^{3} Q_{j} \Pi^{i j}=\frac{1}{2}\left(\frac{2}{3} \Pi^{u u}+\frac{1}{3} \Pi^{d d}+\frac{1}{3} \Pi^{s s}-\Pi^{u d}-\Pi^{u s}+\frac{2}{3} \Pi^{d s}\right)
\end{aligned}
$$

Virtual corrections
SU(3) $)_{\mathrm{f}}: \quad \Pi^{u u}=\Pi^{d d}=\Pi^{s s}$ and $\Pi^{u d}=\Pi^{u s}=\Pi^{d s}:$

$$
\Rightarrow \hat{\Pi}_{3 \gamma}^{(3)}(0) \approx \hat{\Pi}_{\gamma \gamma}^{(3)}(0)
$$

SU(2) + OZI: $\quad \Pi^{u u}=\Pi^{d d}, \Pi^{s s}=0 \quad \Pi^{u d}=\Pi^{u s}=\Pi^{d s}=0$

$$
\Rightarrow \hat{\Pi}_{3 \gamma}^{(3)}=9 \hat{\Pi}_{\gamma \gamma}^{(3)} / 10
$$

## For numerical analysis:

$$
\begin{aligned}
& \left.\hat{\Pi}_{\gamma \gamma}^{(3)}(0)\right|_{\mu=2 \mathrm{GeV}}=3.597(21) \\
& \hat{\Pi}_{3 \gamma}^{(3)}(0)=(1 \pm 0.2) \hat{\Pi}_{\gamma \gamma}^{(3)}(0)
\end{aligned}
$$

## Phase space integration

$$
\mathrm{d} \sigma_{\mathrm{LO}}^{\nu_{\ell \ell} \rightarrow \nu_{\ell \ell \ell}}=\frac{\alpha}{4 \pi} \frac{m \omega}{\pi^{3}}\left[\left(c_{\mathrm{L}}^{\nu_{\ell \ell} e}\right)^{2} \tilde{\mathrm{I}}_{\mathrm{L}}+c_{\mathrm{R}}^{2} \tilde{\mathrm{I}}_{\mathrm{R}}+c_{\mathrm{L}}^{\nu_{\ell \ell e}} c_{\mathrm{R}} \tilde{\mathrm{~L}}_{\mathrm{R}}\right]
$$

## Real radiation

$$
\tilde{\mathrm{I}}_{i}=\int \frac{R_{i}}{m^{2} \omega^{2}} \delta^{4}\left(k+p-k_{\gamma}-k^{\prime}-p^{\prime}\right) \frac{\mathrm{d}^{3} \vec{k}_{\gamma}}{2 k_{\gamma}} \frac{\mathrm{d}^{3} \vec{k}^{\prime}}{2 \omega^{\prime}} \frac{\mathrm{d}^{3} \vec{p}^{\prime}}{2 E^{\prime}}
$$

$$
\begin{aligned}
R_{\mathrm{L}}=-\mathrm{I}_{\mathrm{L}}[ & \left.\frac{p^{\mu}}{\left(p \cdot k_{\gamma}\right)}-\frac{p^{\prime \mu}}{\left(p^{\prime} \cdot k_{\gamma}\right)}\right]^{2} m^{2} \omega^{2}+\frac{\left(k \cdot p^{\prime}\right)\left(k^{\prime} \cdot p^{\prime}\right)}{\left(k_{\gamma} \cdot p^{\prime}\right)}-\frac{(k \cdot p)\left(k^{\prime} \cdot p\right)}{\left(k_{\gamma} \cdot p\right)}+\frac{(k \cdot p)\left(k^{\prime} \cdot p^{\prime}\right)}{\left(k_{\gamma} \cdot p^{\prime}\right)}-\frac{(k \cdot p)\left(k^{\prime} \cdot p^{\prime}\right)}{\left(k_{\gamma} \cdot p\right)} \\
& +\frac{\left(k^{\prime} \cdot p^{\prime}\right)\left(k \cdot k_{\gamma}\right)}{\left(k_{\gamma} \cdot p\right)}\left(1+\frac{m^{2}}{\left(k_{\gamma} \cdot p\right)}-\frac{\left(p \cdot p^{\prime}\right)}{\left(k_{\gamma} \cdot p^{\prime}\right)}\right)+\frac{(k \cdot p)\left(k^{\prime} \cdot k_{\gamma}\right)}{\left(k_{\gamma} \cdot p^{\prime}\right)}\left(1-\frac{m^{\prime 2}}{\left(k_{\gamma} \cdot p^{\prime}\right)}+\frac{\left(p \cdot p^{\prime}\right)}{\left(k_{\gamma} \cdot p\right)}\right)
\end{aligned}
$$

## Regions decomposition

$$
+\mathrm{d} \sigma_{v}^{\nu_{\ell} e \rightarrow \nu_{\ell} e}+\mathrm{d} \sigma_{\mathrm{dyn}}^{\nu_{\ell} e \rightarrow \nu_{\ell} e}+\mathrm{d} \sigma_{\mathrm{NF}}^{\nu_{\ell} e \rightarrow \nu_{\ell} e \gamma}
$$

## Real radiation



$$
\mathrm{d} \sigma_{\mathrm{LO}}^{\nu_{\ell} e \rightarrow \nu_{\ell} e \gamma}+\mathrm{d} \sigma_{\mathrm{NLO}}^{\nu_{\ell} e \rightarrow \nu_{\ell} e}=\left[1+\frac{\alpha}{\pi}\left(\delta_{v}+\delta_{s}+\delta_{\mathrm{I}}+\delta_{\mathrm{II}}\right)\right] \mathrm{d} \sigma_{\mathrm{LO}}^{\nu_{\ell} e \rightarrow \nu_{\ell} e} .
$$

$$
\vec{f}=\vec{k}+\vec{p}-\vec{p}^{\prime}
$$



Ram, PR 155, 1539 (1967)
Sarantakos, Sirlin, Marciano NPB 217, 84 (1983)

## Consistency checks

- cancellation of Sudakov logarithms in electron energy spectrum


## Real radiation

$$
\delta_{v} \underset{\beta \rightarrow 1}{\sim}-\frac{1}{8} \ln ^{2}(1-\beta), \quad \delta_{s} \underset{\beta \rightarrow 1}{\sim}-\frac{1}{4} \ln ^{2}(1-\beta), \quad \delta_{\mathrm{II}} \underset{\beta \rightarrow 1}{\sim} \frac{3}{8} \ln ^{2}(1-\beta)
$$

- soft photon log near electron threshold

$$
\frac{\mathrm{d} \sigma_{\mathrm{LO}}^{\nu_{\ell} e \rightarrow \nu_{\ell} e \gamma}+\mathrm{d} \sigma_{\mathrm{NLO}}^{\nu_{\ell} e \rightarrow \nu_{\ell} e}}{\mathrm{~d} \sigma_{\mathrm{LO}}^{\nu_{\ell} e \rightarrow \nu_{\ell} e}} \approx-\frac{\alpha}{\pi} \frac{2}{\beta}\left(\beta-\frac{1}{2} \ln \frac{1+\beta}{1-\beta}\right) \ln \frac{E_{0}^{\prime}-E^{\prime}}{m}
$$

- alternate orders of integration (next slide)
triple, double, single differentials and total cross section



## - total cross sections (and uncertainties!)

## Results



$$
\sigma\left[\nu_{\mu} e \rightarrow \nu_{\mu} e(\gamma)\right]=\left[1.5724 \times 10^{-42} \mathrm{~cm}^{2}\right] \times\left[1 \pm 0.0037_{\mathrm{had}} \pm 0.0003_{\mathrm{EW}} \pm 0.00007_{\mathrm{pert}}\right]
$$

## - electron and e.m. energy spectrum

$$
\delta=\frac{\mathrm{d} \sigma_{\mathrm{LO}}^{\nu_{\ell} e \rightarrow \nu_{\ell} e \gamma}+\mathrm{d} \sigma_{\mathrm{NLO}}^{\nu_{\ell} e \rightarrow \nu_{\ell} e}-\mathrm{d} \sigma_{\mathrm{LO}}^{\nu_{\ell} e \rightarrow \nu_{\ell} e}}{\mathrm{~d} \sigma_{\mathrm{LO}}^{\nu_{\ell} \rightarrow \nu_{\ell} e}}
$$

## Results



## - electron and e.m. energy spectrum

$$
\delta=\frac{\mathrm{d} \sigma_{\mathrm{LO}}^{\nu_{\ell} e \rightarrow \nu_{\ell} e \gamma}+\mathrm{d} \sigma_{\mathrm{NLO}}^{\nu_{\ell} e \rightarrow \nu_{\ell} e}-\mathrm{d} \sigma_{\mathrm{LO}}^{\nu_{\ell} e \rightarrow \nu_{\ell} e}}{\mathrm{~d} \sigma_{\mathrm{LO}}^{\nu_{\ell} \rightarrow \nu_{\ell} e}}
$$

## Results



## - cut dependence of flux constraints

## Results



## - neutrino energy reconstruction

## Results



$$
\omega_{\mathrm{rec}}=\frac{m\left|\vec{p}_{e}\right|}{\left(E_{e}+m\right) \cos \theta_{e}-\left|\vec{p}_{e}\right|}
$$

## Neutrino-electron scattering and radiative corrections

- corrections large compared to anticipated experimental precision


## Summary and Outlook HVP, target for lattice QCD

- milliradian angular resolution at DUNE should provide capability for neutrino energy reconstruction: smearing by radiative corrections must be included (cf. 1910.10996)
- extension to scattering on nucleons and nuclei: factorization into hard, soft, collinear, with hard functions parameterized and measured

