The Coh-γ channel: a NuSTEC project L. Alvarez Ruso, J. Nieves, E. Saúl Sala, E. Wang + S. Dytman (GENIE), J. Morfin (MINERvA), M. Roda (GENIE), K. Sutton (MicroBooNE),...

Single Photon emission in NC interactions:

Important background for $\nu_{\mu} \rightarrow \nu_{e}$ studies (θ_{13} , δ) if γ is misidentified as e[±] from CCQE $\nu_{e} n \rightarrow e^{\mu} p$ or $\bar{\nu}_{e} p \rightarrow e^{\mu} n$

• Unexplained excess of events at $200 < E_{\nu}QE < 475 \text{ MeV}$

NC $\Delta \rightarrow N \gamma \leftarrow 2^{nd}$ largest background after NC π^{o} production

Ongoing MicroBooNE analysis: Public note 1041,

http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1041-PUB.pdf

L. Alvarez-Ruso, IFIC

- Single Photon emission in NC interactions:
- on nucleons $\,
 u(ar
 u) \, N o
 u(ar
 u) \, \gamma \, N$
- on nuclei $u(ar
 u)\,A o
 u(ar
 u)\,\gamma\,X
 u$ incoherent

 $u(ar{
u}) \, A o
u(ar{
u}) \, \gamma \, A \leftarrow ext{coherent}$

L. Alvarez-Ruso, IFIC

NuSTEC Board Meeting 2019

L. Alvarez-Ruso, IFIC

NuSTEC Board Meeting 2019

- Single Photon emission in NC interactions:In GENIE:on nucleons $\nu(\bar{\nu}) N \rightarrow \nu(\bar{\nu}) \gamma N$ $\Delta \rightarrow N \gamma$ decayon nuclei $\nu(\bar{\nu}) A \rightarrow \nu(\bar{\nu}) \gamma X \leftarrow$ incoherent+ global Fermi gas $\nu(\bar{\nu}) A \rightarrow \nu(\bar{\nu}) \gamma A \leftarrow$ coherentnot available
 - small cross section but forward peaked
 - **possible background for** ν -e measurements
 - possible background for BSM processes (with light mediators)
 - potential signal at MINERvA (for $E_{\nu} > 800 \text{ MeV}$)

The model

Feynman diagrams:

R. Hill, PRD 81 (2010)Zhang & Serot, PRC 86 (2012)Wang, LAR, Nieves, PRC 89 (2014)

The model

$$\mathcal{M}_r = \frac{G_F \, e}{\sqrt{2}} \, \epsilon_\mu^{*(r)} \bar{u}(p') \Gamma^{\mu\alpha} u(p) \boldsymbol{l}_\alpha$$

• Δ (1232) pole terms:

 \sim

 $\Gamma^{\mu\alpha} = \hat{J}^{\delta\mu}_{\rm EM}(p',q_{\gamma}) D^{\Delta}_{\delta\sigma}(p+q) J^{\sigma\alpha}_{\rm NC}(p,q) + \hat{J}^{\delta\alpha}_{\rm NC}(p',-q) D^{\Delta}_{\delta\sigma}(q_{\gamma}-p) J^{\sigma\mu}_{\rm EM}(p',-q_{\gamma})$

$$J_{\rm NC}^{\beta\mu}(p,q) = \left[\frac{\tilde{C}_{3}^{V}(q^{2})}{M}(g^{\beta\mu}\not{q} - q^{\beta}\gamma^{\mu}) + \frac{\tilde{C}_{4}^{V}(q^{2})}{M^{2}}(g^{\beta\mu}q \cdot p_{\Delta} - q^{\beta}p_{\Delta}^{\mu}) + \frac{\tilde{C}_{5}^{V}(q^{2})}{M^{2}}(g^{\beta\mu}q \cdot p - q^{\beta}p^{\mu})\right]\gamma_{5} + \frac{\tilde{C}_{3}^{A}(q^{2})}{M}(g^{\beta\mu}\not{q} - q^{\beta}\gamma^{\mu}) + \frac{\tilde{C}_{4}^{A}(q^{2})}{M^{2}}(g^{\beta\mu}q \cdot p_{\Delta} - q^{\beta}p_{\Delta}^{\mu}) + \tilde{C}_{5}^{A}(q^{2})g^{\beta\mu}$$
$$J_{\rm EM}^{\beta\mu}(p,q\gamma) = \left[\frac{C_{3}^{(p,n)}(0)}{M}(g^{\beta\mu}\not{q}_{\gamma} - q^{\beta}\gamma^{\mu}) + \frac{C_{4}^{(p,n)}(0)}{M^{2}}(g^{\beta\mu}q_{\gamma} \cdot p_{\Delta} - q^{\beta}p_{\Delta}^{\mu}) + \frac{C_{5}^{(p,n)}(0)}{M^{2}}(g^{\beta\mu}q_{\gamma} \cdot p - q^{\beta}p^{\mu})\right]\gamma_{5}$$

Coherent NC_y

 $\quad \mathbf{\nu}(\bar{\nu}) A \to \nu(\bar{\nu}) \gamma A$

- Microscopic description: Same NC γ mechanisms as in $\nu(\bar{\nu}) N \rightarrow \nu(\bar{\nu}) \gamma N$ $\nu(\bar{\nu}) A \rightarrow \nu(\bar{\nu}) \gamma X$
 - Nuclear corrections: $\Gamma_{\Delta} \to \tilde{\Gamma}_{\Delta}(\rho) 2 \operatorname{Im} \Sigma_{\Delta}(\rho)$

Coherent sum over all nucleons

$$\mathcal{M}_{r} = \frac{G_{F} e}{\sqrt{2}} \epsilon_{\mu}^{*(r)} \bar{u}(p') \mathcal{A}^{\mu\alpha} u(p) l_{\alpha}$$
$$\mathcal{A}^{\mu\alpha} = \sum_{N=p,n} \int d\vec{r} e^{i(\vec{q} - \vec{q}_{\gamma}) \cdot \vec{r}} \rho_{N}(r) \widehat{\Gamma}_{N}^{\mu\alpha}(\rho(r))$$
$$\hat{\Gamma}_{r}^{\mu\alpha} = \frac{1}{2} \sum_{i} \operatorname{Tr} \left[\bar{u} \, \Gamma_{i(r)}^{\mu} \, u \right] \quad \leftarrow \text{ sum over all mechanisms}$$

Results

 $\mathbf{\nu}(\bar{\nu}) A \to \nu(\bar{\nu}) \gamma A$

Peak position:

$$E_{\gamma} \approx \frac{M_{\rm Res}^2 - m_N^2}{2m_N}$$

LAR & E. Saúl Sala

- Part of the work performed during Eduardo's 6 week stay @ Fermilab
 - Financed by CSIC, MINERvA and Fermilab Theory Division
- 1. Original model optimized and simplified to make its implementation in GENIE feasible
- 2. Extension to higher E_{γ} (for MINERvA)
- 3. Implementation in GENIE

1. Original model optimized and simplified to make its implementation in GENIE feasible

$$\begin{split} \mathrm{Im}\Sigma_{\Delta}(\rho) \approx V_{0}\frac{\rho(r)}{\rho(0)} & \leftarrow \text{independent of kinematics} \\ \tilde{\Gamma}_{\Delta}(\rho) - 2\,\mathrm{Im}\Sigma_{\Delta}(\rho) \approx \tilde{\Gamma}_{\Delta}(\rho_{\mathrm{ave}}) - 2\,\mathrm{Im}\Sigma_{\Delta}(\rho_{\mathrm{ave}}) \quad \rho_{\mathrm{ave}} = \frac{A}{\frac{4}{3}\pi R^{3}} \end{split}$$

$$\int d\vec{r} e^{i(\vec{q}-\vec{q}_{\gamma})\cdot\vec{r}} \rho_N(r) \widehat{\Gamma}_N^{\mu\alpha}(r) \approx \widehat{\Gamma}_N^{\mu\alpha}(\rho_{\text{ave}}) F_N(q^2)$$

There are analytic expressions for the nuclear form factors F_N (q²)
 Hadronic transiton currents were simplified by keeping the most important terms to calculate

$$\hat{\Gamma}_{r}^{\mu\alpha} = \frac{1}{2} \sum_{i} \operatorname{Tr} \left[\bar{u} \, \Gamma_{i(r)}^{\mu} \, u \right]$$

analytically (Mathematica): matrix multiplication + Tr -> (long) polynomials

2. Extension to higher E_{γ} (for MINERvA)

Particle	$L_{2I \cdot 2J}$	Overall status	$N\pi$	$N\gamma$
N(939)	P_{11}			
N(1440)	P_{11}	****	****	***
N(1520)	D_{13}	****	****	****
N(1535)	S_{11}	****	****	***
N(1650)	S_{11}	****	****	***
N(1675)	D_{15}	****	****	****
N(1680)	F_{15}	****	****	****
N(1700)	D_{13}	***	***	**
N(1710)	P_{11}	***	***	***
N(1720)	P_{13}	****	****	**
$\Delta(1232)$	P_{33}	****	****	****
$\Delta(1600)$	P_{33}	***	***	**
$\Delta(1620)$	S_{31}	****	****	***
$\Delta(1700)$	D_{33}	****	****	***
$\Delta(1905)$	F_{35}	****	****	***
$\Delta(1910)$	P_{31}	****	****	*
$\Delta(1920)$	P_{33}	***	***	*
$\Delta(1930)$	D_{35}	***	***	**
$\Delta(1950)$	F_{37}	****	****	****

Tiator et al., Eur.Phys.J.ST 198 (2011)

2. Extension to higher E_{γ} (for MINERvA)

Some preliminary results: $E_{\nu}=1 \text{ GeV}$ on 12°C

L. Alvarez-Ruso, IFIC

NuSTEC Board Meeting 2019

2. Extension to higher E_{γ} (for MINERvA)

■ Some preliminary results: E_v=10 GeV on ¹²C

L. Alvarez-Ruso, IFIC

NuSTEC Board Meeting 2019

2. Extension to higher E_{γ} (for MINERvA)

■ Some preliminary results: on ¹²C

2. Extension to higher E_{γ} (for MINERvA)

■ Some preliminary results: on ¹²C

2. Extension to higher E_{γ} (for MINERvA)

■ Some preliminary results: on ¹²C

2. Extension to higher E_{γ} (for MINERvA)

■ Some preliminary results: on ¹²C

- 3. Implementation in GENIE
 - Incubator project
 - Cross section code written by Eduardo and implemented with Steve D.'s help
 - Cross section validation with external code:

Code being re-written by Marco Roda for proper integration in GENIE
 Kathryn Sutton (MicroBooNE): event generation. Can be challenging

Summary

Coherent NC_Y

- 1. Original model optimized and simplified to make its implementation in GENIE feasible
- 2. Extension to higher E_{γ} (for MINERvA)
- 3. Implementation in GENIE
- Reaction dominated by $\Delta(1232)$ excitation but other resonances
- Theoretical error dominated by Res properties
- Interesting and/or potentially relevant for T2K, MicroBooNE, MINERvA

Nuclear effects

$$\quad \nu(\bar{\nu}) A \to \nu(\bar{\nu}) \gamma X$$

In-medium modification of the Δ (1232) resonance

$$In \quad \frac{1}{p^2 - m_{\Delta}^2 + im_{\Delta}\Gamma_{\Delta}(p^2) }$$
replace $M_{\Delta} \rightarrow M_{\Delta} + \operatorname{Re}\Sigma_{\Delta}(\rho)$
 $\frac{\Gamma_{\Delta}}{2} \rightarrow \frac{\tilde{\Gamma}_{\Delta}(\rho)}{2} - \operatorname{Im}\Sigma_{\Delta}(\rho)$
 $\tilde{\Gamma}_{\Delta} \leftarrow \text{Free width } \Delta \rightarrow N \pi \text{ modified by Pauli blocking}$
 $\operatorname{Re}\Sigma_{\Delta}(\rho) \approx 0$
 $\operatorname{Im}\Sigma_{\Delta}(\rho) \leftarrow \text{many-body processes:} \begin{array}{c} \cdot \Delta N \rightarrow N N \\ \cdot \Delta N \rightarrow N N \pi \\ \cdot \Delta N \rightarrow N N N \end{array}$