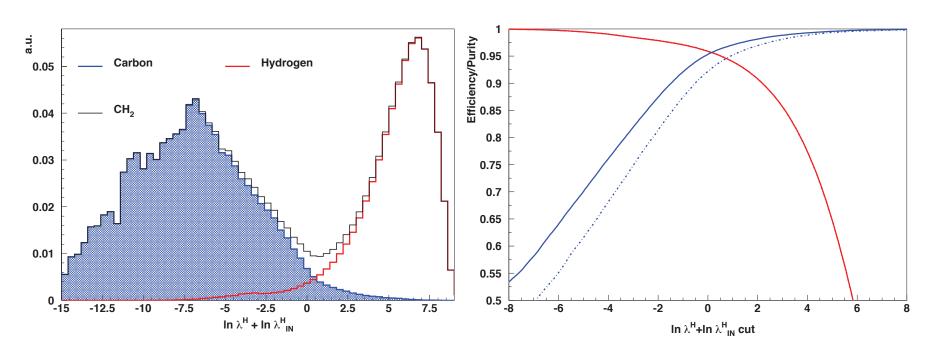
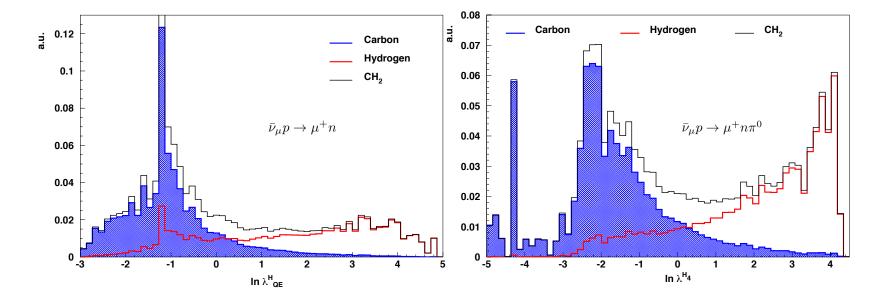

Precision Measurements of $\nu(\bar{\nu})$ -H Interactions at LBNF

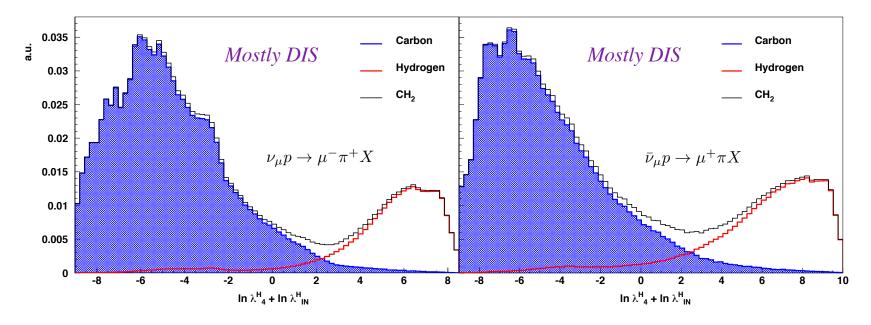
R. Petti

University of South Carolina, Columbia SC, USA

NuSTEC board meeting Fermilab, December 11, 2019


- ♦ High resolution detector providing control of ν -target(s) as in e^{\pm} DIS:
 - Massive ν detectors intrinsically limited by the knowledge of the target composition & materials;
 - Possible accurate control of target(s) by separating target(s) from active detector(s);
 - Thin targets spread out uniformly within tracker by keeping low density $0.005 \le \rho \le 0.18 \text{ g/cm}^3$
 - \Longrightarrow Straw Tube Tracker (STT) in $B\sim 0.6$ T with 4π electromagnetic calorimeter

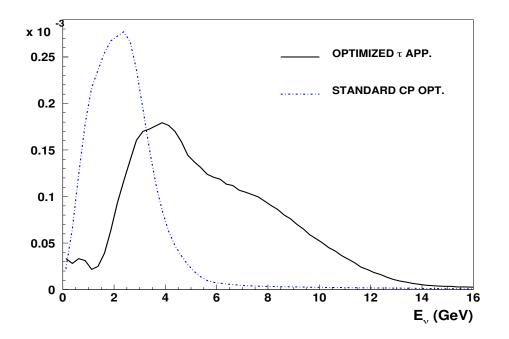

- ◆ Targets (100% purity) account for ~ 97% of STT mass (straws 3%) and can be tuned to achieve desired statistics & resolutions.
- ♦ Separation from excellent vertex, angular & timing resolutions.
- ◆ Thin targets can be replaced during data taking: C, Ca, Ar, Fe, Pb, etc.


arXiv:1910.05995 [hep-ex]

- $\bullet \nu(\bar{\nu})$ -Hydrogen by subtracting CH₂ and C targets after kinematic selection:
 - Exploit high resolutions & control of chemical composition and mass of targets in STT;
 - Model-independent data subtraction of dedicated C (graphite) target from main CH₂ target;
 - Kinematic selection provides large H samples of inclusive & exclusive CC topologies with 80-95% purity and >90% efficiency before subtraction.
 - \implies Viable and realistic alternative to liquid H_2 detectors

H. Duyang, B. Guo, S.R. Mishra, RP, arXiv:1809.08752 [hep-ph]

	ν_{μ} -H CC			$ar{ u}_{\mu}$ -H CC						
Process	$\mu^- p \pi^+$	$\mu^- p \pi^+ X$	$\mu^- n \pi^+ \pi^+ X$	Inclusive	$\mu^+ p \pi^-$	$\mu^+ n \pi^0$	$\mu^+ n$	$\mu^+ p \pi^- X$	$\mu^+ n\pi\pi X$	Inclusive
Eff. ε	96%	89%	75%	93%	94%	84%	75%	85%	82%	80%
Purity	95%	93%	70%	93%	95%	84%	80%	94%	84%	84%

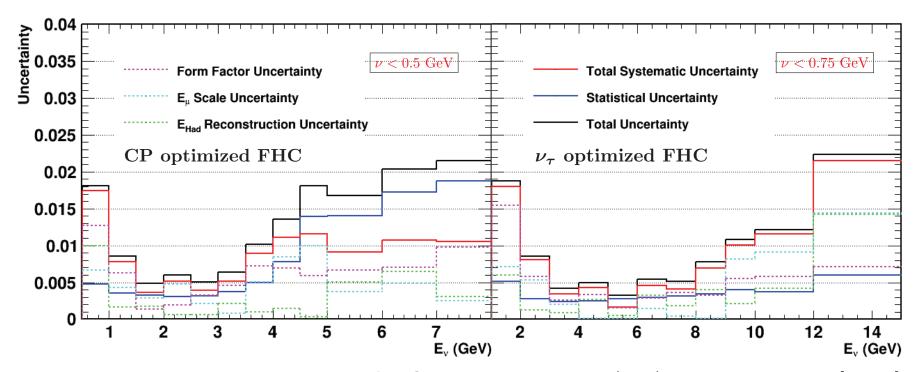

TABLE I. Efficiency ε and purity for the kinematic selection of H interactions from the CH₂ plastic target using the likelihood ratio $\ln \lambda^{\rm H} + \ln \lambda^{\rm H}_{\rm IN}$ or $\ln \lambda^{\rm H}_4 + \ln \lambda^{\rm H}_{\rm IN}$. For the $\mu^+ n$ QE topologies $\ln \lambda^{\rm H}_{\rm QE}$ is used instead. The cuts applied for each channel are chosen to maximize the sensitivity defined as $S/\sqrt{S+B}$, where S is the H signal and B the C background. The CC inclusive samples are obtained from the combination of the corresponding exclusive channels.

ν_{μ} -H CC, $\varepsilon \equiv 75\%$			$\bar{\nu}_{\mu}$ -H CC, $\varepsilon \equiv 75\%$							
Process	$\mu^- p \pi^+$	$\mu^- p \pi^+ X$	$\left \mu^- n\pi^+\pi^+ X\right $	Inclusive	$\mu^+ p \pi^-$	$\mu^+ n\pi^0$	$\mu^+ n$	$\mu^+ p \pi^- X$	$\mu^+ n\pi\pi X$	Inclusive
Purity	99%	99%	70%	98%	99%	90%	80%	98%	90%	86%

TABLE II. Purity achieved with the kinematic selection of H interactions from the CH₂ plastic target using a cut on the likelihood ratio $\ln \lambda^{\rm H}_{\rm IN} + \ln \lambda^{\rm H}_{\rm IN}$ or $\ln \lambda^{\rm H}_{\rm 4} + \ln \lambda^{\rm H}_{\rm IN}$ resulting in the fixed H signal efficiency ε specified. For the $\mu^+ n$ QE topologies $\ln \lambda^{\rm H}_{\rm QE}$ is used instead. For illustration purpose, the value of the efficiency is chosen as the lowest among the ones listed in Tab. I for individual topologies. The CC inclusive samples are obtained from the combination of the corresponding exclusive channels.

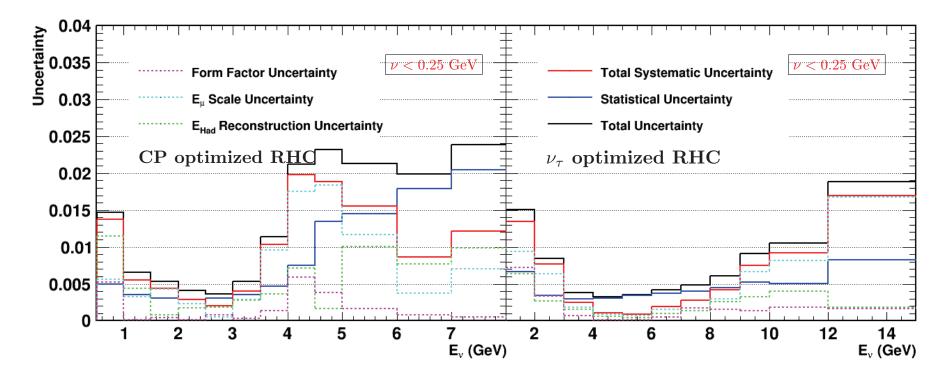
CC process	CH ₂ target	H target	CH ₂ selected	C bkgnd	H selected
$\nu_{\mu}p \to \mu^{-}p\pi^{+}$	5,615,000	2,453,000	2,305,000	115,000	2,190,000
$\nu_{\mu}p \to \mu^{-}p\pi^{+}X$	11,444,000	955,000	877,000	61,000	816,000
$\nu_{\mu}p \to \mu^- n\pi^+\pi^+ X$	3,533,000	183,000	158,000	48,000	110,000
ν_{μ} CC inclusive	34,900,000	3,591,000	3,340,000	224,000	3,116,000
$\bar{\nu}_{\mu}p \to \mu^{+}n$	4,450,000	1,688,000	1,274,000	255,000	1,019,000
$ \bar{\nu}_{\mu}p \to \mu^{+}p\pi^{-}$	827,000	372,000	342,000	17,000	325,000
$\bar{\nu}_{\mu}p \to \mu^{+}n\pi^{0}$	791,000	366,000	295,000	48,000	247,000
$\bar{\nu}_{\mu}p \to \mu^{+}p\pi^{-}X$	$2,\!270,\!000$	176,000	153,000	9,000	144,000
$ \bar{\nu}_{\mu}p \to \mu^{+}n\pi\pi X$	2,324,000	280,000	220,000	35,000	185,000
$\bar{\nu}_{\mu}$ CC inclusive	13,000,000	2,882,000	2,284,000	364,000	1,920,000

TABLE III. Number of events expected in the selection of all the various processes on H with the default low energy (anti)neutrino beams available at the LBNF [1, 2], assuming 5+5 years of data taking with the neutrino and antineutrino beams. The first two columns (CH₂ and H targets) refer to the initial statistics, while the last three include all selection cuts described in this paper (Sec. III and Tab. I). For the CH₂ and C targets the numbers refer to the given final state topologies originated from either p or n interactions. The fifth column shows the total residual C background to be subtracted from the corresponding CH₂ selected samples. We use a ratio $M_C/M_{C/CH_2} = 0.12$ to measure the C backgrounds from the graphite targets. See the text for details.

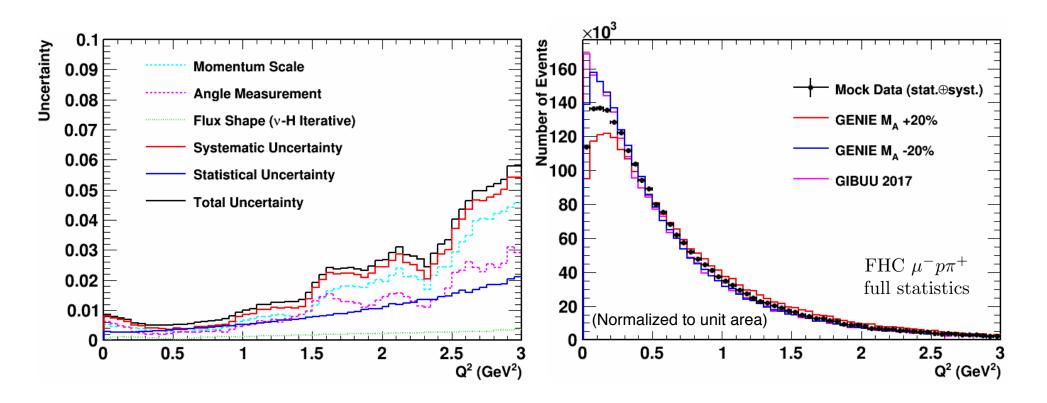

	Events (5t CH ₂)			
Process	CH_2	Н		
Standard CP op	timized (1.2	MW):		
$ u_{\mu}$ CC (FHC, 5 y)	35×10^6	3.6×10^6		
$ar{ u}_{\mu}$ CC (RHC, 5 y)	$13{ imes}10^6$	2.9×10^6		
Optimized $ u_{ au}$ app	pearance (2.4	MW):		
$ u_{\mu}$ CC (FHC, 2 y)	66×10^6	$6.5{ imes}10^6$		
$ar{ u}_{\mu}$ CC (RHC, 2 y)	24×10^6	4.3×10^6		

- ♦ Available LBNF Long-Baseline Neutrino Facility beam optimized for FD ν_{τ} appearance: Conceivable dedicated run after 5y FHC + 5y RHC with the "standard" beams optimized for CP
 - LBNF: 120 GeV p, 1.2 MW, 1.1×10^{21} pot/y, ND at 574m;
 - LBNF upgrade: 120 GeV p, **2.4 MW (x 2)**, $\sim 3 \times 10^{21}$ pot/y.
- lacktriangle Assume a modest 2y FHC run with ν_{τ} optimized beam & LBNF upgrade

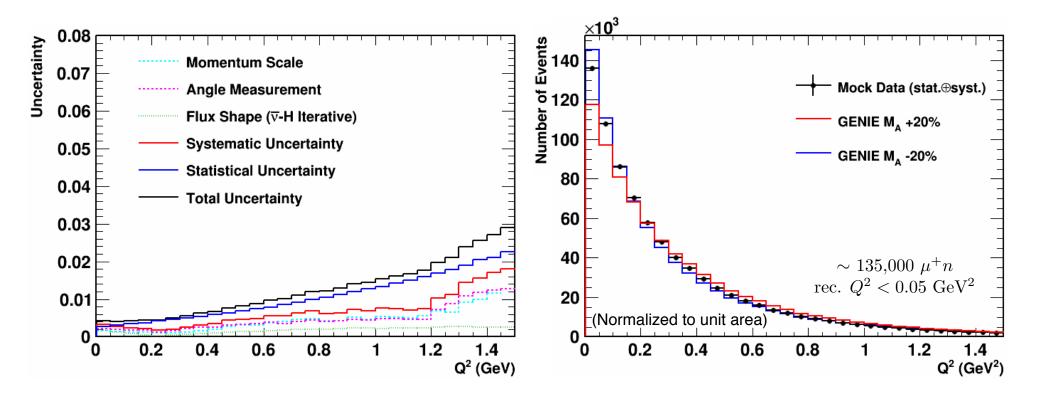
- **♦** Excellent angular, momentum & timing resolution:
 - Low density design for accurate tracking;
 - $\delta \theta \sim 1$ -2 mrad, $\delta p/p \sim 3$ -5% with default density $\rho \sim 0.18$ g/cm³;
 - Time resolution $\sim 1ns$, can resolve beam structure & withstand high rates (max. drift $\sim 50~ns$).
- \bullet e^+/e^- & other particle ID over the entire tracking volume:
 - Electron ID with Transition Radiation (TR) and $dE/dx \Longrightarrow \pi$ rejection $\sim 10^{-3}$;
 - 4π detection of π^0 from γ conversions ($\sim 50\%$) within the STT volume;
 - $p/\pi/K$ ID with dE/dx and range.
- Accurate in-situ calibrations of momentum & angle reconstruction:
 - Momentum scale from $K_0 \to \pi^+\pi^-$ in STT volume (264,000 in FHC);
 - p reconstruction and identification, vertex, etc. from $\Lambda \to p\pi^-$ in STT volume (293,000 in FHC);
 - e^{\pm} reconstruction and identification from $\gamma \to e^+e^-$ in STT volume (8 × 10⁶ in FHC).
 - \implies Momentum scale uncertainty < 0.2% (NOMAD)


CONTROL OF FLUXES

- lacktriangle Relative ν_{μ} flux vs. E_{ν} from exclusive $\nu_{\mu}p \to \mu^{-}p\pi^{+}$ on Hydrogen:
 - Well reconstructed tracks for $\mu^- p \pi^+$ topology on H ($\delta p/p \sim 3.5\%$);
 - Cut $|\nu < 0.5(0.75)$ GeV flattens cross-sections reducing uncertainties on E_{ν} dependence;
 - Systematic uncertainties dominated by muon energy scale ($\Delta E_{\mu} \sim 0.2\%$ in STT from K_0 mass).
 - ⇒ Dramatic reduction of systematics vs. techniques using nuclear targets


H. Duyang, B. Guo, S.R. Mishra, RP, PLB 795 (2019) 424, arXiv:1902.09480 [hep-ph]

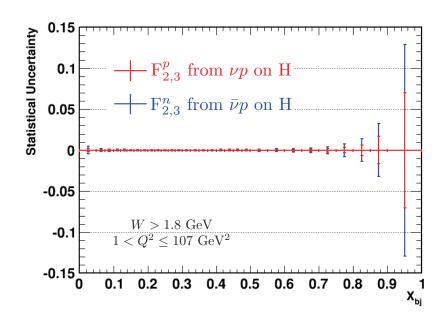
- lacktriangle Relative $\bar{\nu}_{\mu}$ flux vs. E_{ν} from exclusive $\bar{\nu}_{\mu}p \to \mu^{+}n$ QE on Hydrogen:
 - E_{ν} from QE kinematics on H and reconstructed direction of interacting neutrons;
 - Cut $|\nu < 0.1(0.25)$ GeV flattens cross-sections reducing uncertainties on E_{ν} dependence;
 - Systematics and total uncertainties comparable to relative ν_{μ} flux from $\nu_{\mu}p \to \mu^- p\pi^+$ on H.



H. Duyang, B. Guo, S.R. Mishra, RP, PLB 795 (2019) 424, arXiv:1902.09480 [hep-ph]

MEASUREMENT OF NUCLEON FORM FACTORS

Expected Q^2 distribution for $\nu_{\mu}p \to \mu^- p\pi^+$ on H (5y low-energy beam)

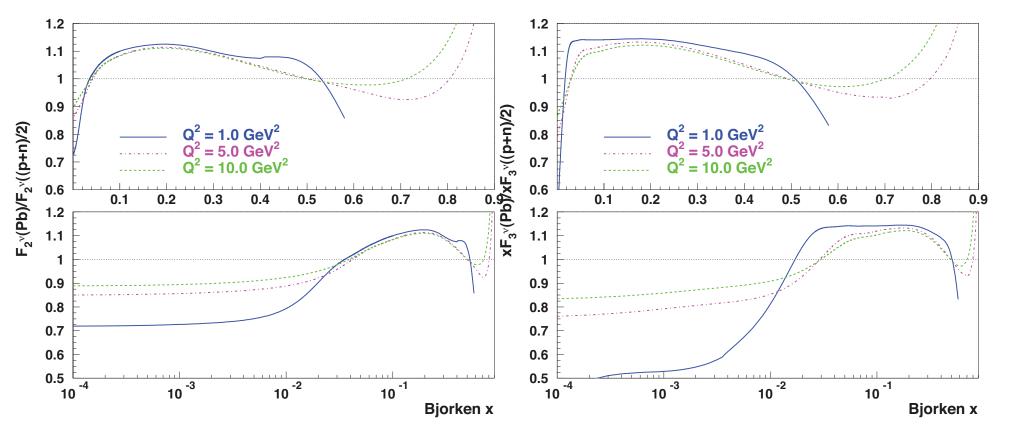


Expected Q^2 distribution for $\bar{\nu}_{\mu}p \to \mu^+ n$ QE on H (5y low-energy beam)

◆ The Adler integral provides the ISOSPIN of the target and is derived from current algebra:

$$S_A(Q^2) = \int_0^1 \frac{dx}{2x} \left(F_2^{\bar{\nu}p} - F_2^{\nu p} \right) = I_p$$

- At large Q^2 (quarks) sensitive to $(s-\bar{s})$ asymmetry, isospin violations, heavy quark production
- Apply to nuclear targets and test nuclear effects (S. Kulagin and R.P. PRD 76 (2007) 094023)
- \implies Precision test of S_A at different Q^2 values


- Only measurement available from BEBC based on 5,000 νp and 9,000 $\bar{\nu}p$ (D. Allasia et al., ZPC 28 (1985) 321)
- Direct measurement of $F_{2,3}^{\nu n}/F_{2,3}^{\nu p}$ free from nuclear uncertainties and comparisons with e/μ DIS $\implies d/u$ at large x and verify limit for $x \to 1$

Process	u(ar u)-H				
Standard CP optimized:					
$ u_{\mu}$ CC (5 y)	$3.4{ imes}10^6$				
$ar{ u}_{\mu}$ CC (5 y)	$2.5{ imes}10^6$				
Optimized $ u_{ au}$ appearance:					
$ u_{\mu}$ CC (2 y)	$6.5{ imes}10^6$				
$ u_{\mu}$ CC (2 y)	4.3×10^{6}				

lacktriangle Availability of u-H & $\bar{
u}$ -H allows direct measurement of nuclear modifications of $F_{2,3}$:

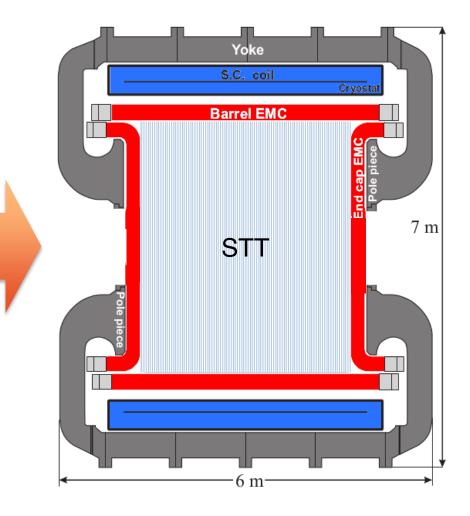
$$R_A \stackrel{\text{def}}{\equiv} \frac{2F_{2,3}^{\nu A}}{F_{2,3}^{\bar{\nu}p} + F_{2,3}^{\nu p}}(x, Q^2) = \frac{F_{2,3}^{\nu A}}{F_{2,3}^{\nu N}}$$

- ullet Comparison with e/μ DIS results and nuclear models;
- Study flavor dependence of nuclear modifications using ν & $\bar{\nu}$ (W^{\pm}/Z helicity, C-parity, Isospin);
- Effect of the axial-vector current.
- lacktriangle Study nuclear modifications to parton distributions in a wide range of Q^2 and x.
- ♦ Study non-perturbative contributions from High Twists, PCAC, etc. and quark-hadron duality in different structure functions F_2 , xF_3 , $R = F_L/F_T$.
- ◆ Nuclear modifications of nucleon form factors e.g. using NC elastic, CC quasi-elastic and resonance production.
- ◆ Coherent meson production off nuclei in CC & NC and diffractive physics.
 - ⇒ Synergy with Heavy Ion and EIC physics programs for cold nuclear matter effects.

Ratio of Charged Current structure functions on $^{207} Pb$ and isoscalar nucleon (p+n)/2

S. Kulagin and R.P., NPA 765 (2006) 126; PRD 76 (2007) 094023, PRC 90 (2014) 045204

- ♦ The intensity and $\nu(\bar{\nu})$ spectra available at the LBNF offer a unique opportunity for neutrino physics, with a detector offering a control of configuration, material & mass of neutrino targets similar to electron experiments & a suite of target materials.
- ♦ The solid hydrogen target can provide high statistics $\mathcal{O}(10^6)$ samples of $\nu(\bar{\nu})$ -hydrogen interactions, allowing precisions in the measurement of ν & $\bar{\nu}$ fluxes < 1%.
- ♦ Turn the DUNE ND site into a general purpose ν & $\bar{\nu}$ physics facility with broad program complementary to ongoing fixed-target, collider and nuclear physics efforts


European Particle Physics Strategy Update 2018-2020 (# 131): https://indico.cern.ch/event/765096/contributions/3295805/

⇒ Discovery potential & hundreds of diverse physics topics

Photo from workshop in Frascati, March 2019

Reuse existing KLOE magnet + ECAL and fill it with STT & nuclear targets

A Proposal to enhance the DUNE Near-Detector Complex

G. Adamov^{1,10}, L. Alvarez Ruso², I. Bagaturia¹, P. Bernardini^{3,4}, S. Bertolucci^{5,6}, M. Bhattacharjee⁷, B. Bhuyan⁷, S. Biagi⁸, A. Caminata⁹, A. Cervelli⁵, D. Chokheli^{1,10}, A. Chukanov¹⁰, S. Davini⁹, S. Di Domizio^{9,11}, C. Distefano⁸, L. Di Noto^{9,11}, M. Diwan⁴¹², H. Duyang¹³, A. Falcone^{14,15}, O. Fedin¹⁶, A. Ferrari¹⁷, F. Ferraro^{9,11}, A. Gabrielli⁵, M. Guerzoni⁵, B. Guo¹³, M.A. Iliescu^{18,19}, A.L. Kataev²⁰, A. Khvedelidze^{1,10}, B. Kirby¹², U. Kose^{5,19}, S.A. Kulagin²⁰, C. Kullenberg¹⁰, C. Kuruppu¹³, I. Lomidze¹, G. Laurenti⁵, V. Maleev¹⁶, G. Mandrioli⁵, N. Mauri^{5,6}, P. Mehta²¹, S.R. Mishra¹³, N. Moggi^{5,6}, A. Montanari⁵, S. Movchan¹⁰, S. Nagu²², F. Olness²³, M. Pallavicini^{9,11}, R. Papaleo⁸, L. Pasqualini^{5,6}, L. Patrizii⁵, R. Petti ¹³, V. Pia^{5,6}, F. Poppi^{5,6}, V.K.S. Potukuchi²⁴, M. Pozzato^{5,6}, G. Riccobene⁸, P.R. Sala²⁵, O. Samoylov¹⁰, P. Sapienza⁸, F. H. Sawy^{26,28}, Ja. Singh²², Jy. Singh²², V. Singh²⁷, G. Sirri⁵, L. Stanco²⁶, A. Surdo⁴, M. Tenti⁵, F. Terranova^{14,15}, G. Testera⁹, M. Torti^{14,15}, N. Tosi⁵, R. Travaglini²⁶, Z. Tsamalaidze^{1,10}, N. Tsverava^{1,10}, and S. Zucchelli^{5,6}

Currently 74 physicists from 23 institutions and 7 countries

[DUNE docdb #13262]

- ♦ Interest & support from the community important to pursue the existing opportunity of precision measurements of $\nu(\bar{\nu})$ -H at LBNF.
- Need to quantify the potential impact of the new $\nu(\bar{\nu})$ -H samples on models and/or our understanding of various physics quantities.
- Expand the list of physics measurements enabled by the new $\nu(\bar{\nu})$ -H samples.
- ★ Experimental effort: prototypes, tests and detector construction.

Welcome suggestions, feedback and/or potential interest

Backup slides