ProtoDUNE-DP Photon Detection System

Inés Gil-Botella

LBNC meeting

5 December 2019

Outline

- The Photon Detection System (PDS)
 - Goal and description of the PDS system in ProtoDUNE-DP
 - Light calibration system
- Data taking conditions
- Summary of data collected in ProtoDUNE-DP
- Analyses ongoing
 - PMT calibration
 - Noise and background levels
 - Purity measurement
 - S1 signal characterization
 - TPB/PEN WLS performance
 - S2 signal identification & characterization
- Improvements for next phase

Photon Detection System

Crucial system to provide event timing, trigger for non-beam events and

calorimetric measurements

36 8" cryogenic photomultipliers (**PMTs**)

Wavelength-shifter: PEN / TPB coating on PMT

Voltage divider base + single HV-signal cable + splitter (external)

Light calibration system: LED (external) & fiber based

DAQ system (external)

Photomultiplier tubes

• **36** (+4 spares) 8" cryogenic PMTs (Hamamatsu R5912-20Mod) fully characterized at CIEMAT: gain, dark current, linearity, and light rate at room and cryogenic T <u>JINST 13 (2018) T10006</u>

Final layout of PMTs

Final layout of PMTs

Channels 2, 15, 16, 29 connected to the scope

4 PMTs connected to the scope to monitor sparks

PMT bases, cables & splitters

Light calibration system

05/12/19

Alternative light calibration system

Alternative system installed:

- 2 fibers placed on top of the field cage to calibrate several PMTs with a single fiber
- More convenient for DUNE

Light data taking conditions

Scintillation light data acquisition started on June 2019 during GAr purging

- Different triggering data acquired:
 - Light calibration system: (1 kHz) to determine PMT gain
 - Random trigger: (configurable rate) background studies
 - PMT self-trigger: (Hz-kHz) coincidence of several PMTs under different configurations to select tracks
 - Global Trigger (external trigger): light-charge simultaneous analysis
 - Random trigger (10 Hz) in coincidence with charge
 - Temporary scintillator panels trigger (0.45 Hz)

Summary of data collected

- Data taken almost every day since June 2019
 - PMTs are switch ON-OFF several times per day to allow cameras to survey the liquid surface and purity monitor measurements
- All data is long-term saved in eos:
 - Raw data as taken from MIDAS
 - ROOT data converted
- Midas data is also copied to CASTOR
- > 1000 runs taken
- This represents:
 - 90 hours of data (60M events).
 - 46TB of MIDAS data, 11TB of root files
- ~ Weekly calibrations
- 2 long PMT runs (~15 h):
 - 6/11/19 w/o field
 - 27/11/19 w field (2.9 kV LEMs, 50 kV cathode, 6 kV grid)

Trigger	# of runs	# of events	time (h)
CRT Panels	3	4.5k	2.9
Random trigger runs	39	7.8M	7.0
Calibration runs	534	10.6M	4.3
PMT trigger runs	462	43.5M	77.1
Total	1,038	61.9M	91.3

		# of	
Voltage across LEMs	# of runs	events	time (h)
0kV	286	27.9M	23.3
2.7kV	2	56.1k	1.3
2.9kV	42	2.6M	9.8
3.0kV	16	663k	4.6
3.1kV	30	993k	5.1
3.2kV	40	1.1M	0.7
3.3kV	73	1.8M	0.5
Tests	549	26.9M	45.9
Total	1,038	61.9M	91.3

Data analysis: PMT calibration

- Using the LED-based dedicated calibration system:
 - SPE integration
 - Fit SPE spectrum (2 gaussians)
 - Gain vs HV curve por each PMT

- 36 PMTs can be calibrated using top fibers (with 2 LED voltage levels)
- Measured gain variation of ~7% (on average) wrt the baseline system

PMTs calibration with alternative system

Data analysis: noise level

- 36 PMTs are operative
- Very low noise level:

$$RMS = 0.6 \pm 0.1 ADC$$

Coincident LAr scintillation light detected in 36 PMTs

< 16 ns time accuracy among channels

- SPE amplitude extracted from data in LAr vs PMT gain (S/N > 11 for SPE at G=1e7)
- Studying the SPE background level for different detector conditions

Data analysis: purity

ongoing

- Cosmic muons produce scintillation light on LAr
- Scintillation profile can be obtained averaging waveforms
- No drift field is applied (full recombination of electrons)
- Fit: convolution of 1 gaussian with 3 exponentials
- τ_{slow} component is an indicator of LAr purity

Scintillation light profile

Effect of drift field

Data analysis: S1 signal

- S1 identification:
 - Signal amplitude > 20 ADC (G 1e7)
 - No S1 considered during tau slow
 - Integral: 96 ns around max (S1 fast)

- S1 rate (muon rate) <u>preliminary</u>:
 - Random trigger, PMTs at G 1e7, no fields
 - TPB PMTs: 8.3 ± 0.4 kHz
 - PEN PMTs: 4.1 ± 0.7 kHz

- Triggering with external temporary scintillator panels
 - All PMTs detect light following a certain pattern

 Not to scale

G 1e7, 1473 events, 0.45 Hz

Data analysis: **TPB/PEN WLS Performance**

- Comparing the S1 amplitude of a PEN & TPB PMTs symmetrically placed in the detector and wrt trigger **PMT**
- The **average S1 amplitude** ratio:

- Considering the geometrical differences, the PEN conversion efficiency wrt TPB would be ~20-30%
- A more detailed analysis on going: taking into account PMT non linearities

The TPB-coated PMT photocathode receives ~35% more photons due to the geometrical differences of the two systems

Data analysis: S2 signal

- We are able to detect electroluminescence signals in all PMTs
- S2 has different time profile depending on track geometry:
 - S2 right after S1 for tracks crossing the liquidgas interface
 - S2-S1 distance = electron drift distance
 - Long S2 for tracks crossing the drift length
 - Short S2 for horizontal tracks

Electroluminescence light signals (S2) seen by all 36 PMTs (**6 m away** from PMTs)

*Not at the same scale: Larger zoom in PEN PMTs to appreciate S2 4 PMTs connected to the scope for monitoring sparks in grids-LEMs

> LEMs 2.7kV Cath. 50kV Grid. 6.2kV

S2 signal analysis ongoing

Improvements for next phase

- Operate the system in stable conditions with long runs (right now we are switching PMT HV ON-OFF several times per day)
- Acquire more data in coincidence with charge readout (development of a combined analysis)
- Data with new external muon panels
- Data with 6m drift (measurement of the electron lifetime, S1-S2 signal correlation, ...)
- Test TPB reflective foils to improve the light detector response uniformity
- TPB stability tests
- Reduce signal reflections/overshoots

