Leveraging Physical Models in Machine Learning

Rebecca Willett Statistics, Applied Math, and Computer Science

Machine learning

Machine learning

How do we leverage a combination of training data and physical models?

How do we leverage a combination of training data and physical models?

Learning to Solve Inverse Problems in Imaging

Davis Gilton, UW-Madison

Greg Ongie, UChicago

Inverse problems in imaging

Observe: $y = X\beta + \varepsilon$

Goal: Recover β from y

- Inpainting
- Deblurring
- Superresolution
- Compressed Sensing
- MRI
- Radar

β

Classical approach: Tikhonov regularization (1943)

- Example: deblurring
- Least squares solution:

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Classical approach: Tikhonov regularization (1943)

- Example: deblurring
- Least squares solution:

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

 Tikhonov regularization (aka "ridge regression")

Classical approach: Tikhonov regularization (1943)

- Example: deblurring
- Least squares solution:

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

 Tikhonov regularization (aka "ridge regression")

$$\widehat{\beta} = \underset{\beta}{\text{arg min } ||y - X\beta||_2^2 + \lambda ||\beta||_2^2}$$

$$= (X^T X + \lambda I)^{-1} X^T y$$

better conditioned; suppresses noise

Geometric models of images

Patch subspaces and manifolds

Regularization in inverse problems

y arg min
$$\|y - X\beta\|_2^2 + r(\beta)$$
 $\widehat{\beta}$

Regularization in inverse problems

$$\lim_{\beta \to \beta} \arg \min \|y - X\beta\|_2^2 + r(\beta) \widehat{\beta}$$

Classical: r(β) is a pre-defined smoothness-promoting regularizer (e.g. Tikhinov or ridge estimation)

Geometric: r(β) reflects image geometry (e.g. sparsity, patch redundancy, total variation)

Learned: use training data to learn r(β)

Classes of methods

Model Agnostic Decoupled (Ignore X) (First learn, then reconstruct) **Neumann Networks Unrolled Optimization** (this talk!)

Super-resolution with CNNs

Model Agnostic (Ignore X)

Classes of methods

Model Agnostic Decoupled (Ignore X) (First learn, then reconstruct) **Neumann Networks Unrolled Optimization** (this talk!)

Decoupled
(First learn, then reconstruct)

y
$$\longrightarrow$$
 $\underset{\beta}{\text{arg min } ||y - X\beta||_2^2 + r(\beta)} \longrightarrow \widehat{\beta}$

$$r(\beta) = \begin{cases} 0, & \beta \text{ on image manifold} \\ \infty, & \text{otherwise} \end{cases}$$

"Bad" image off manifold

"Good" image on manifold

y
$$\longrightarrow$$
 $\underset{\beta}{\text{arg min } ||y - X\beta||_2^2 + r(\beta)} \longrightarrow \widehat{\beta}$

$$r(\beta) = \begin{cases} 0, & \beta \text{ on image manifold} \\ \infty, & \text{otherwise} \end{cases}$$

y arg min
$$\|y - X\beta\|_2^2 + r(\beta)$$
 $\widehat{\beta}$

$$r(\beta) = \begin{cases} 0, & \beta \text{ on image manifold} \\ \infty, & \text{otherwise} \end{cases}$$

Learn generator G that outputs $\beta \in \mathbb{R}^d$ given $z \in \mathbb{R}^{d'}$ for d' < d

$$r(\beta) = \begin{cases} 0, & \beta \in range(G) \\ \infty, & otherwise \end{cases}$$

y arg min
$$\|y - X\beta\|_2^2 + r(\beta)$$
 $\widehat{\beta}$

$$r(\beta) = \begin{cases} 0, & \beta \text{ on image manifold} \\ \infty, & \text{otherwise} \end{cases}$$

Learn generator G that outputs $\beta \in \mathbb{R}^d$ given $z \in \mathbb{R}^{d'}$ for d' < d

$$r(\beta) = \begin{cases} 0, & \beta \in range(G) \\ \infty, & otherwise \end{cases}$$

Choose $\beta \in \text{range}(G)$ that best fits data:

$$\widehat{\beta} = \underset{\beta \in \text{range}(G)}{\text{arg min}} \|y - X\beta\|_{2}^{2}$$

$$= G(\widehat{z})$$

$$\widehat{z} = \underset{z}{\text{arg min}} \|y - XG(z)\|_{2}^{2}$$

How much training data?

Original β

Observed y

Reconstruction with convolutional neural network (CNN) trained with 80k samples

How much training data?

Original β

Observed y

Reconstruction with convolutional neural network (CNN) trained with 2k samples

Prior vs. conditional density estimation

Prior vs. conditional density estimation

Prior vs. conditional density estimation

We need conditional density $p(X_{\perp}\beta \mid X\beta)$

Implications for learning to regularize

Estimating conditional density $p(X_{\perp}\beta \mid X\beta)$ can require far fewer samples than estimating full density $p(\beta)$

X should be fully utilized in learning process

Classes of methods

Model Agnostic Decoupled (Ignore X) (First learn, then reconstruct) **Neumann Networks Unrolled Optimization** (this talk!)

Assume $r(\beta)$ differentiable.

1

$$\widehat{\beta} = \underset{\beta}{\text{arg min}} \|y - X\beta\|_2^2 + r(\beta)$$

$$\text{set } \widehat{\beta}^{(1)} \text{and stepsize } \eta > 0$$

$$\text{for } k = 1, 2, \dots$$

$$\widehat{\beta}^{(k+1)} = \widehat{\beta}^{(k)} + \eta X^{\top} (y - X\widehat{\beta}^{(k)}) + \eta \nabla r(\widehat{\beta}^{(k)})$$

Assume $r(\beta)$ differentiable.

1

$$\begin{split} \widehat{\beta} &= \underset{\beta}{\text{arg min}} \|y - X\beta\|_2^2 + r(\beta) \\ \text{set } \widehat{\beta}^{(1)} \text{and stepsize } \eta > 0 \\ \text{for } k &= 1, 2, \dots \\ \widehat{\beta}^{(k+1)} &= \widehat{\beta}^{(k)} + \eta X^\top (y - X\widehat{\beta}^{(k)}) + \eta \nabla r(\widehat{\beta}^{(k)}) \end{split}$$

Replace with learned neural network

Assume $r(\beta)$ differentiable.

1

$$\begin{split} \widehat{\beta} &= \underset{\beta}{\text{arg min}} \| y - X\beta \|_2^2 + r(\beta) \\ &\text{set } \widehat{\beta}^{(1)} \text{and stepsize } \eta > 0 \\ &\text{for } k = 1, 2, \dots \\ &\widehat{\beta}^{(k+1)} = \widehat{\beta}^{(k)} + \eta X^\top (y - X\widehat{\beta}^{(k)}) + \eta \nabla r(\widehat{\beta}^{(k)}) \end{split}$$

Replace with learned neural network

Assume $r(\beta)$ differentiable.

1

$$\begin{split} \widehat{\beta} &= \underset{\beta}{\text{arg min}} \|y - X\beta\|_2^2 + r(\beta) \\ \text{set } \widehat{\beta}^{(1)} \text{and stepsize } \eta > 0 \\ \text{for } k &= 1, 2, \dots \\ \widehat{\beta}^{(k+1)} &= \widehat{\beta}^{(k)} + \eta X^\top (y - X\widehat{\beta}^{(k)}) + \eta \nabla r(\widehat{\beta}^{(k)}) \end{split}$$

Replace with learned neural network

"Unrolled" optimization framework trained end-to-end

Neumann series

Assume $r(\beta)$ differentiable.

$$\widehat{\beta} = \underset{\beta}{\text{arg min}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + r(\boldsymbol{\beta})$$
$$= (\mathbf{X}^{T}\mathbf{X} + \nabla r)^{-1}\mathbf{X}^{T}\mathbf{y}$$
(1)

Let A be a linear operator. Then the Neumann series is

$$(I - A)^{-1} = \sum_{k=0}^{\infty} A^k = I + A + A^2 + A^3 + \cdots$$
 (2)

If A is contractive, we know higher-order terms are smaller.

Can we estimate β by approximating (1) using (2)? (e.g. $A = I - X^TX + \nabla r$ if ∇r is linear)

Neumann networks

Assume $r(\beta)$ differentiable.

$$\widehat{\beta} = \underset{\beta}{\text{arg min } ||y - X\beta||_2^2 + r(\beta)}$$

$$= (X^T X + \nabla r)^{-1} X^T y$$

$$\approx \sum_{k=1}^B (I - \eta X^T X - \eta \nabla r)^k \eta X^T y$$

Neumann network:

Neumann networks

Assume $r(\beta)$ differentiable.

$$\widehat{\beta} = \underset{\beta}{\text{arg min }} \|y - X\beta\|_{2}^{2} + r(\beta)$$

$$= (X^{T}X + \nabla r)^{-1}X^{T}y$$

$$\approx \sum_{k=1}^{B} (I - \eta X^{T}X - \eta \nabla r)^{k} \eta X^{T}y$$
Replace with learned neural network

Neumann network:

Comparison

Gradient descent network

Neumann network

Preconditioning

Neumann network: [I- $\eta X^T X$] is linear and ∇r is nonlinear

Preconditioned Neumann net: $\eta \lambda [I + \lambda X^T X]^{-1}$ is linear and ∇r nonlinear

Classes of methods

Model Agnostic Decoupled (Ignore X) (First learn, then reconstruct) **Neumann Networks Unrolled Optimization** (this talk!)

Comparison Methods

Residual Autoencoder

Design-agnostic GAN

$\hat{\beta} = \underset{\beta \in \text{range}(G)}{\text{arg min}} \|y - X\beta\|_2^2$

Bora, Jalal, Price, Dimakis, 2017

Unrolled Gradient Descent

Neumann Network

Summary of Results

		Inpaint	Deblur	Deblur $+\epsilon$	CS2	CS8	SR4	SR10
CIFAR10	NN	28.20	36.55	29.43	33.83	25.15	24.48	23.09
	PNN	28.40	37.83	30.47	33.75	23.43	26.06	21.79
	GDN	27.76	31.25	29.02	34.99	25.00	24.49	20.47
	MoDL	28.18	34.89	29.72	33.47	23.72	24.54	21.90
	TNRD	27.87	34.84	29.70	32.74	25.11	23.84	21.99
	ResAuto	29.05	31.04	25.24	18.51	9.29	24.84	21.92
	CSGM	17.88	15.20	14.61	17.99	19.33	16.87	16.66
	TV	25.90	27.57	26.64	25.41	20.68	24.71	20.68
CelebA	NN	31.06	31.01	30.43	35.12	28.38	27.31	23.57
	PNN	30.45	33.79	30.89	32.61	26.41	28.70	23.74
	GDN	30.99	30.19	29.27	34.93	28.33	27.14	23.46
	MoDL	30.75	30.80	29.59	30.22	25.84	26.42	24.12
	TNRD	30.21	29.92	29.79	33.89	28.19	25.75	22.73
	ResAuto	29.66	25.65	25.29	19.41	9.16	25.62	24.92
	CSGM	17.75	15.68	15.30	17.99	18.21	18.11	17.88
	TV	24.07	30.96	26.24	25.91	23.01	26.83	20.70
STL10	NN	27.47	29.43	26.12	31.98	26.65	24.88	21.80
	PNN	28.00	30.66	27.21	31.40	23.43	25.95	22.19
	GDN	28.07	30.19	25.61	31.11	26.19	24.88	21.46
	MoDL	28.03	29.42	26.06	27.29	23.16	24.67	16.88
	TNRD	27.88	29.33	26.32	31.05	25.38	24.55	21.21
	ResAuto	27.28	25.42	25.13	19.48	9.30	24.12	21.13
	CSGM	16.50	14.04	15.59	16.67	16.39	16.58	16.47
	TV	26.29	29.96	26.85	24.82	22.04	26.37	20.12

Table 1: PSNR comparison for the CIFAR, CelebA, and STL10 datasets respectively. Values reported are the median across a test set of size 256.

Sample Complexity

Sample Complexity

Application: MRI reconstruction

Neumann series for nonlinear operators?

If A is a *nonlinear* operator, Neumann series identity does not hold:

$$(I - A)^{-1} \neq \sum_{k=0}^{\infty} A^k$$

In our case, $A = I - \eta X^T X - \eta \nabla r$, where ∇r may be nonlinear

Can we justify Neumann net as an estimator beyond the linear setting?

Case Study: Union of Subspaces Models

Model images as belonging to a union of low-dimensional subspaces

Case Study: Union of Subspaces Models

Model images as belonging to a union of low-dimensional subspaces

Neumann nets and union of subspaces

For simplicity, assume:

- X has orthonormal rows
- measurements are noise-free: $y = X\beta \in \mathbb{R}^m$
- maximum subspace dimension < m/2
- the union of subspaces is "generic"

Lemma:

Optimal "oracle" regularizer ∇r is piecewise linear in β

$$\nabla r^*(\beta) = \begin{cases} R_1\beta & \text{if } \beta \in S_1 \\ \vdots & \vdots \\ R_K\beta & \text{if } \beta \in S_K \end{cases}$$

 $S_k = set of points closer to subspace k than any other subspace$

- Neumann network with ReLU activations can closely approximate this
- Outputs of all Neumann net blocks are in the same S_k for some $k \Rightarrow$ for a fixed input, ∇ r behaves linearly
 - ⇒ Neumann series foundation is justifiable and accurate

Neumann nets and union of subspaces

For simplicity, assume:

- X has orthonormal rows
- measurements are noise-free: $y = X\beta \in \mathbb{R}^m$
- maximum subspace dimension < m/2
- the union of subspaces is "generic"

Theorem (informal):

For a given step size $0 < \eta < 1$ and number of blocks B there exists a Neumann network estimator $\hat{\beta}(X\beta)$ with a piecewise linear learned component such that

$$\|\widehat{\beta}(X\beta) - \beta\| \leq (1-\eta)^{B+1} \|X\beta\|$$

for all β in the union of subspaces.

Neumann nets and union of subspaces

For simplicity, assume:

- X has orthonormal rows
- measurements are noise-free: $y = X\beta \in \mathbb{R}^m$
- maximum subspace dimension < m/2
- the union of subspaces is "generic"

Theorem (informal):

For a given step size $0 < \eta < 1$ and number of blocks B there exists a Neumann network estimator $\hat{\beta}(X\beta)$ with a piecewise linear learned component such that

$$\|\widehat{\beta}(X\beta) - \beta\| \le (1 - \eta)^{B+1} \|X\beta\|$$

for all β in the union of subspaces.

arbitrarily small reconstruction error

Empirical support for theory

Experiments on synthetic data show that when ∇r is a deep ReLU network, the trained ∇r behaves as the predicted ∇r^*

Test of Piecewise Linearity of ∇r

 $R = \nabla r$ reflects union of subspaces structure

Conclusions

- Explicitly accounting for design (X) during training can dramatically reduce sample complexity.
- Networks that include X in training, such as unrolling approaches and Neumann networks, perform well in the low-sample regime.
- Neumann networks are mathematically justified for union of subspaces.

Learning from Highly Correlated Features using Graph Total Variation

Abby Stevens, UChicago

Ben Mark, UW-Madison

Yuan Li, UW-Madison

Garvesh Raskutti, UW-Madison

Predicting precipitation in southwest US

Predicting precipitation in southwest US

Sparse inverse problems

Sparse inverse problems

Climate forecasting

900 spatio-temporal seasurface temperatures each year

75 years of data

Climate forecasting

900 spatio-temporal seasurface temperatures each year

75 years of data

20th Century Reanalysis https://www.esrl.noaa.gov/psd/data/20thC_Rean/

What is the best way to combine simulated data with observational / experimental data?

What is the best way to combine simulated data with observational / experimental data?

- Data augmentation (treat simulated data as extra samples from same distribution at experimental data) — poorly understood biases
- Transfer learning (train on simulated data, then tweak learned model using experimental data) — active area of ML
- Prior selection (use simulated data to choose a prior distribution) GTV is special case of this

What is the best way to combine simulated data with observational / experimental data?

Depends on physical model accuracy, computational complexity of simulations, scale (mis)match between simulations and experiments, etc.

- Data augmentation (treat simulated data as extra samples from same distribution at experimental data) — poorly understood biases
- Transfer learning (train on simulated data, then tweak learned model using experimental data) — active area of ML
- Prior selection (use simulated data to choose a prior distribution) GTV is special case of this

Model

Weighted graph G = (V, E, W)

V = covariates; (E,W) influences:

- Correlations among covariates (columns of X)
- 2. Similarity among covariate weights (β's)

Model

Assume i-th row of X is distributed $X_i \sim \mathcal{N}(0,\Sigma)$

σ_{j,k} gives covariance of columns j and k

Weighted graph G = (V,E,W)

V = covariates; (E,W) influences:

- Correlations among covariates (columns of X)
- 2. Similarity among covariate weights (β's)

Graph total variation estimation

$$\hat{\beta} = \underset{\beta}{\text{arg min}} \|y - X\beta\|_2^2$$

Data fit

$$+ \lambda_{S} \sum_{j,k=1}^{p} \sigma_{j,k} (\beta_{j} - \beta_{k})^{2}$$

Laplacian smoothness

reduces the ill-conditionedness of X when columns are highly correlated

$$+ \lambda_1 \lambda_{TV} \sum_{j,k=1}^p \sigma_{j,k}^{1/2} |\beta_j - \beta_k|$$

Graph total variation

promotes estimates that are wellaligned with graph structure

 $+\lambda_1 \|\beta\|_1$

LASSO

promotes sparsity

Method finds a *sparse set of covariate clusters* that encode information on response

Example 1: Highly correlated clusters

Columns of X in wellseparated clusters

Example 1: Highly correlated clusters

B = # blocks containing nonzero elements of β

$$\|\beta - \hat{\beta}_{GTV}\|_2^2 \preceq \frac{B \log p}{\text{bigger}} \qquad \text{bigger} \\ \|\beta - \hat{\beta}_{LASSO}\|_2^2 \preceq \frac{\|\beta\|_0 \log p}{n}$$

Highly correlated clusters:

Estimates

correlation strength a = 2 = diagonal variance $|Supp(\beta)| = 84$ 6/20 active blocks

Example 2: Chain graph

Columns of X **not** in well-separated clusters

$$\begin{split} \|\beta - \widehat{\beta}_{GTV}\|_2^2 & \leq \frac{\sqrt{\|\beta\|_0 \log p}}{n} \\ \|\beta - \widehat{\beta}_{LASSO}\|_2^2 & \leq \frac{\|\beta\|_0 \log p}{n} \end{split}$$

Chain graph: Estimates

3

True β

GTV in climate forecasting

- We have 75 years of observational data
- We also have physical models we can use to generate simulated data:
 - Large Ensemble Community Project (LENS)
 - 40 independent 75-year simulations of SSTs and precipitation
- How can we best leverage this?

Efi Foufoula-Georgiou, UCI

Jim Randerson, UCI

Out-Sample Performance of GTV and of different Methods of Regularization

Region

Out-Sample Performance of GTV and of known teleconnections

Region

arXiv:1803.07658 [pdf, other] stat.ML

Graph-based regularization for regression problems with highly-correlated designs

Authors: Yuan Li, Benjamin Mark, Garvesh Raskutti, Rebecca Willett

How do we leverage a combination of training data and physical models?

Physical models and training data

- Training data can be limited in volume, expensive to collect → we may learn over-simplified predictors
- Physical models can be inaccurate or biased → we may end up with a biased predictor
- If we think of machine learning as using training data to search over a family of predictors, then physical models help constrain the set of viable predictors
- Fundamental tradeoffs among volumes of training data, manifestation of physical models, and risk minimization present significant open challenges

Thank you!