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How do we leverage a combination of training

data and physical models??

training data
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How do we leverage a combination of training

data and physical models??
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N Imaging
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Inverse problems in imaging

Observe: v=XB +¢€
Goal: Recover 3 fromy
Inpainting
Deblurring $
Superresolution

Compressed

Sensing
 MRI
Radar Y




Classical approach: Tikhonov regularization (1943)

 Example: deblurring

e | east squares solution:

B=X"X)"X"y
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Classical approach: Tikhonov regularization (1943)

 Example: deblurring

e | east squares solution:

B=X"X)"X"y
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(aka “ridge regression”)

B = argﬁmiﬂ ly — XB|I5 + AIBII5

=(X"X+ A" 'X"y

better conditioned; suppresses noise



Classical approach: Tikhonov regularization (1943)

 Example: deblurring

e | east squares solution:

B=X"X)"X"y

Tikhonov regularization

e [ikhonov regularization
(aka “ridge regression”)

B = argﬁmiﬂ ly — XB|I5 + AIBII5

=(X"X+ A" 'X"y

better conditioned; suppresses noise



Geometric models of images

Combine to
estimate
denoised

pixel

_—

Denoised
Patches




Regularization in inverse problems

y arg min [y — XBlI5 + r(p) N



Regularization in inverse problems
y argmin [y - XBll5 + r(p) NI

Classical: r(3) is a pre-defined
smoothness-promoting regularizer
(e.g. Tikhinov or ridge estimation)

Geometric: r([3) reflects image geometry
(e.g. sparsity, patch redundancy, total variation)

Learned: use training data to learn r((3)




Classes of methods

Model Agnostic Decoupled
(Ignore X) (First learn, then reconstruct)

Neumann Networks

Unrolled Optimization (this talk!)




Model Agnostic

Super-resolution with CNNs (Ignore X)

raw data
! (low resolution image)

X-1
bicubic
interpolation Train deep CNN
to remove artifacts

approximate blurry/blocky
high-resolution artifacts due to

image re-scaling

reconstruction

Pictures from: http://webdav.tuebingen.mpg.de/pixel/enhancenet/



Classes of methods

Model Agnostic Decoupled
(Ignore X) (First learn, then reconstruct)

Neumann Networks

Unrolled Optimization (this talk!)




Decoupled

GANSs for inverse problems (First learn, then
reconstruct)

y arg min ly — XBll5 +r(B) 3

O, [ onimage manifold
r(B) = .
oo, Otherwise

“‘Bad” image off manifold —

“Good” image on manifold
-




GANS for inverse problems

y argmin ||y — XB||5 + r(B) 3
B

O, [ onimage manifold
r(B) = .
oo, Otherwise



GANS for inverse problems

y arg min ||y — XB||5 + r(B) 3
&

0, [ onimage manifold
r(B) = .
oo, Otherwise

Learn generator G that outputs 3 € Rd given z € Rd for d’ < d

(B = {O, B € range(G)

oo, Ootherwise

Generative




GANS for inverse problems

y arg min ||y — XB||5 + r(B) 3
&

0, [ onimage manifold
r(B) = .
oo, Otherwise

Learn generator G that outputs 3 € Rd given z € Rd for d’ < d

(B = {O, B € range(G)

oo, Otherwise
Choose 3 € range(Q) that best fits data:

B= argmin [ly — XBll5
Berange(G)

=G(2)
2z =argmin |ly — XG(2)||5
Z

Bora, Jalal, Price, Dimakis, 2017



ow much training data”?

Original Observed Reconstruction with
3 y convolutional neural
network (CNN) trained

with 80k samples



ow much training data”?

.
Original Observed Reconstruction with
3 y convolutional neural
network (CNN) trained

with 2k samples



2rior vs. conditional density estimation




Prior vs. conditional density estimation

pixels irrelevant
to inpainting



2rior vs. conditional density estimation

pixels irrelevant
to inpainting

R
p(X.B | XB)

We need conditional density p(X.B | XB)




Implications for learning to regularize

Estimating conditional density p(X.B | XB) can require far
fewer samples than estimating full density p([3)

¥

X should be fully utilized Iin learning process




Classes of methods

Model Agnostic Decoupled
(Ignore X) (First learn, then reconstruct)

Neumann Networks

Unrolled Optimization (this talk!)




Unrolled

Optimization

Assume r([3) differentiable.

B = argﬁmin ly — XB||5 + r(B)

set B and stepsize n > 0
fork=1,2,...

YT =B + nxT(y = xB™) + nvr(3™)




Unrolled
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set B and stepsize n > 0
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B = B 4 xT(y - xB®) +

Replace with learned neural network
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Unrolled

Optimization

Assume r([3) differentiable.

B = argﬁmin ly — XB||5 + r(B)

set B and stepsize n > 0
fork=1,2,...

B = B 4 xT(y - xB®) +

Replace with learned neural network

+ NXTy

“Unrolled” optimization framework trained end-to-end



Neumann series

Assume r([) differentiable.

Neumann
Networks
B = argsmin ly — XB||5 + r(B)

=(X'X+ v~ X'y (1)

Let A be a linear operator. Then the Neumann series is

I-A)"T=) A=14+AF+A+A +... @
k=0

If A 'Is contractive, we know higher-order terms are smaller.

Can we estimate 3 by approximating (1) using (2)7

(e.g. A= - XTX + Vr if Vr is linear)



Neumann networks

Assume r([3) differentiable.
B = arg min ly = XBlI5 + r(B)

=(X'X4+Vvr) X'y

3
~ ) (1= XX = nvn)fnXTy
k=1

Neumann network:
B

2
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Neumann networks

Assume r([3) differentiable.
B= argsmiﬂ ly — XBl|5 + r(B)
=X'"X4+ V) X'y

B
~ ) (I-nXTX —knxTy
k=1

Replace with learned
neural network

Neumann network:

™

Z ~(k)
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Comparison

Gradient descent network

[I-nXTX]()
+ NXTy
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Preconditioning

Neumann network: [[-NnXTX] is linear and Vr is nonlinear
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Classes of methods

Model Agnostic Decoupled
(Ignore X) (First learn, then reconstruct)

Neumann Networks

Unrolled Optimization (this talk!)




Comparison Methods

Residual Autoencoder

Design-agnostic GAN

“skip connection”

1. Train
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Generative

B= argmin [ly — XBl|5
Berange(Q)

Bora, Jalal, Price, Dimakis, 2017

Neumann Network

[ - nX7X](+)

Unrolled Gradient Descent

[I-nXTX](+)
+ nXTy

----------------------------------------------------

[I-nXTX](+) [I-nXTX](+)
+nXTy +nXTy




Summary of Results

Inpaint  Deblur Deblur+e CS2 CS8 SR4 SR10

NN 28.20 36.55 2943 33.83 25,15 2448 23.09

o PNN 28.40 37.83 30.47 33.75 2343 26.06 21.79
v, GDN 27.76 31.25 29.02 3499 2500 2449 2047
< MoDL 28.18 34.89 29.72 3347 2372 2454 21.90
% TNRD 27.87 34.84 29.70 3274 25.11 2384 21.99
ResAuto | 29.05 31.04 25.24 1851 9.29 2484 2192
CSGM 17.88 15.20 14.61 1799 1933 16.87 16.66
TV 25.90 27.57 26.64 2541 20.68 2471 20.68
NN 31.06 31.01 30.43 35.12 28.38 27.31 23.57
PNN 30.45 33.79 30.89 32.61 2641 28.70 23.74

< GDN 30.99 30.19 29.27 3493 2833 27.14 23.46
2 MoDL 30.75 30.80 29.59 30.22 25.84 2642 24.12
& TNRD 30.21 29.92 29.79 33.89 28.19 2575 22.73
ResAuto | 29.66 25.65 25.29 1941 9.16 25.62 24.92
CSGM 17.75 15.68 15.30 1799 18.21 18.11 17.88
TV 24.07 30.96 26.24 2591 23.01 26.83 20.70
NN 27.47 29.43 26.12 3198 26.65 2488 21.80
PNN 28.00 30.66 27.21 31.40 2343 2595 22.19

© GDN 28.07 30.19 25.61 31.11 26.19 2488 21.46
—  MoDL 28.03 29.42 26.06 27.29 23.16 2467 16.88
% TNRD 27.88 29.33 26.32 31.05 25.38 2455 21.21
ResAuto | 27.28 25.42 25.13 1948 9.30 24.12  21.13
CSGM 16.50 14.04 15.59 16.67 1639 1658 1647
TV 26.29 29.96 26.85 24.82 22.04 26.37 20.12

Table 1: PSNR comparison for the CIFAR, CelebA, and STL10 datasets respectively. Values reported are
the median across a test set of size 256.
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Sample Complexity
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Application: MRI
reconstruction

Original/Mask
Test Time (sec)

PNN (34.95 dB)
16.3 sec

NN (33.09 dB)
5.5 sec
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MoDL (34.09 dB)
14.3 sec
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GDN?2 (33.18 dB)
5.7 sec

GDNI1 (31.37 dB)
3.1 sec

TNRD (32.39 dB)
4.0 sec

TV (32.29 dB)
349.2 sec



Neumann series for nonlinear operators?

If A'is a nonlinear operator, Neumann series identity does not hold:
o
(I=A)"# ) A
k=0

In our case, A = | - NX"X -nVr, where Vr may be nonlinear

Can we justify Neumann net as an estimator

beyond the linear setting”



Case Study: Union of Subspaces Models

Model images as belonging to a union of low-dimensional sulbbspaces




Case Study: Union of Subspaces Models

Model images as belonging to a union of low-dimensional subspaces

Images from: Extended Yale B dataset
& http://dhpark22.github.io/greedysc. html




Neumann nets and union of subspaces

-or simplicity, assume:
X has orthonormal rows
measurements are noise-free: y = XB e R™

maximum subspace dimension < m/2
the union of subspaces Is “generic’

Lemma:

e Optimal “oracle” regularizer Vr is piecewise linear in 3

Vr(B) = «

( '
RB TR e Sy Sk = set of points closer to
: : subspace k than any other
\RKB if B € Sk subspace

Neumann network with RelLU activations can closely approximate this

Outputs of all Neumann net blocks are in the same Sk for some k
= for a fixed input, Vr behaves linearly

= Neumann series foundation is justifiable and accurate




Neumann nets and union of subspaces

For simplicity, assume: | ‘gﬁ‘

e X has orthonormal rows

®* measurements are noise-free: y = X8 € R™

e maximum subspace dimension < m/2
¢ the union of subspaces is “generic”

Theorem (informal):

For a given step size 0 <n < 1 and number of blocks B
there exists a Neumann network estimator B(X[3)
with a piecewise linear learned component such that

IBOXB) — BII < (1 —n)FT[IXB|

for all 3 in the union of subspaces.




Neumann nets and union of subspaces

For simplicity, assume: | ‘gﬁ‘

e X has orthonormal rows

®* measurements are noise-free: y = X8 € R™

e maximum subspace dimension < m/2
¢ the union of subspaces is “generic”

Theorem (informal):

For a given step size 0 <n < 1 and number of blocks B
there exists a Neumann network estimator B(X[3)
with a piecewise linear learned component such that

IBOXB) — Bl < (1 — n>B+1 IXB|

for all 3 in the union of subspaces.

arbitrarily small reconstruction error e —— () —— "

“learned component”



—mpirical support for theory

Experiments on synthetic data show that when Vr is a deep RelLU
network, the trained Vr behaves as the predicted Vr*

Test of Piecewise Linearity of Vr Ground truth
2 . t cd
. 0 o®o® ° 4
g 1.0 IB -1 ¢ ¢ ¢ e
» Neumann network input Neumann network output
2 0.8 ! ~ ~ o]
,aml y:XIB*O‘...O IBZZJ'B(])O“...."‘.
= -1 -1
o7
0 0.6 1 1 Neumann network terms Learned component outputs
T X 0.5 ~ 0.2
ol 04 B(O) 0jee®ececce R(,B(O)) 0_000...."’0
* N | -0.5 -0.2
f 0.2 H B 0.2 - 0.2
G 13(1) 0.0*‘..O..’.O R(,B(l)) t0eeeeee®y ®e
Q -0.2 0.2
x 0.0 é é I ~ 0.2 _ 0.2
N Y S Y B2 wgeecees? e R(B?) cweeeeeesese
& -0.2 -0.2
N 0.2 - 0.2
13(3) 0geeeee ¥ o R(IB(?’)) 000 eeeeeoeee
-0.2 -0.2

R = Vronly

R = Vr reflects union of

subspaces structure affects B in X's

null space

Outputs of all blocks
IN same subspace




probability density

Conclusions
over space of all {B: lly-XBlI=0}

* Explicitly accounting for design (X) maes oiB)
during training can dramatically
reduce sample complexity.

* Networks that include X in training,
such as unrolling approaches and L ¥ 1L
Neumann networks, perform well in
the low-sample regime.

 Neumann networks are ‘
mathematically justified for union of — N
subspaces.

arXiv:1901.03707 [pdf, other] cs.LG  statML
Neumann Networks for Inverse Problems in Imaging
Authors: Davis Gilton, Greg Ongie, Rebecca Willett
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L earning from Highly Correlated
Features using Graph Total Variation

/
. /

Abby Stevens, Ben Mark, Yuan Li, Garvesh Raskultti,
UChicago UW-Madison UW-Madison UW-Madison



Predicting precipitation in southwest US

climate divisions

60°S
80°E 100°E 120°E 140°E 160°E 180° 160°W 140°W 120°W 100°W



Predicting

Correlation

0.3

0.2

0.1

porecipitation in southwest US

B - NZI
I Niio 3.4
B Nifio 4

B Nifio 3

NZI

-==-95%

| | | | | | | J

1950 1955 1960 1965 1970 1975 1980 1985 1990

Starting year of 30-yr window



Sparse inverse problems

N _— +
precipitation SSTs at different lags and locations noise or
observation
@) errors
B |
weights on

SSTs



Sparse inverse problems

N _— +
precipitation SSTs at different lags and locations noise or
observation
@) errors

y=XB+¢€

. weights on
Columns of X are highly SSTs
correlated




Climate forecasting

60°S
80°E  100°E 120°E 140°E 160°E 180° 160°W 140°W 120°W 100°W

900 spatio-temporal sea-
surface temperatures each year

/5 years of data

20th Century Reanalysis https://www.esrl.noaa.gov/psd/data/20thC_Rean/



Climate forecasting

60°S
80°E  100°E 120°E 140°E 160°E 180° 160°W 140°W 120°W 100°W

q
[ |
| avusce Longhude) I\
‘ Vertical Grid .
(Height or Pressure)
‘ N 900 spatio-temporal sea-

surface temperatures each year

B
J >
( e
-

73 -

/5 years of data

20th Century Reanalysis https://www.esrl.noaa.gov/psd/data/20thC_Rean/
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40°5
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What is the best way to
combine simulated data with

observational / experimental
data”




What is the best way to
combine simulated data with
observational / experimental
data”?

« Data augmentation (treat simulated data as extra samples from same distribution at
experimental data) — poorly understood biases

* Transfer learning (train on simulated data, then tweak learned model using
experimental data) — active area of ML

* Prior selection (use simulated data to choose a prior distribution) — GTV is special
case of this



What is the best way to
combine simulated data with
observational / experimental
data”?

Depends on physical model accuracy,
computational complexity of

simulations, scale (mis)match between
simulations and experiments, etc.

« Data augmentation (treat simulated data as extra samples from same distribution at
experimental data) — poorly understood biases

* Transfer learning (train on simulated data, then tweak learned model using
experimental data) — active area of ML

* Prior selection (use simulated data to choose a prior distribution) — GTV is special
case of this



Model Weighted graph G = (V,E,W)
V = covariates; (E,W) influences:

1. Correlations among covariates
(columns of X)

2. Similarity among covariate
weights (B’s)




Moael Weighted graph G = (V,E,W)
V = covariates; (E,W) influences:

1. Correlations among covariates
(columns of X)

2. Similarity among covariate
weights (B’s)

Assume I-th row of X Is
distributed Xi ~ N(0,2)

Oj k gives covariance of
columns j and k




B well-aligned with graph

LAV,

11@

B not well-aligned with graph 10
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Graph total variation estimation

A - 2 Data fit
B =argmin|ly — XB||5
3
P Laplacian reduces the ill-conditionedness of
\ 2 X when columns are highly
S E :Oj,k(Bj — By smoothness correlated
k=1
D Graph total promotes estimates that are well-
1/2 - i i
+ A ATy E :Ojlé |BJ — Bl variation aligned with graph structure
k=1
+ MBI LASSO promotes sparsity

Method tinds a sparse set of covariate clusters that encode

information on response



-xample 1: Highly correlated clusters
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-xample 1: Highly correlated clusters

Columns of X in well-
separated clusters

B = # blocks containing nonzero elements of [3

= |Og 0 Much
B — BGTV”% bigger

than B!
Ogp
I8 — Brassolls = aan

N




p = 280 = number of
—ighly correlated clusters: covariates

- n = 100 = number of
-stimates responses

True § r = .6 = off-diagonal
- correlation strength

a = 2 = diagonal variance

L L [Supp(B)| = 84
6/20 active blocks

— O =2 N W

50 100 150 200 250

3 GTV-indep 3 . GTV-esti
2| 2
1 g 11
0 0
1 -1 OIS -1 TR
50 100 150 200 250 50 100 150 200 250
OWL 3 CRL-indep 5 . CRL-esti

3 :

2 ]
1 . ; i
oM I i .
1

50 100 150 200 250

- O - DN W

50 100 150 200 250



—xample 2: Chain graph

> =
Columns of X not in
well-separated clusters
- [Bllologp
|8 — Bamvlls = V

N
IBllologp
N

A 2
IP — BLassoll2 =



Chain graph:

-stimates

True 5

50 100 150 200 250

GTV-indep 3

3 3

2 A 2

1 ” 1 1 armsnomng ....
0 1 0
1 1

GTV-esti

OWL 3

50 100 150 200 250

50 100 150 200 250
CRL-indep

i ",!l"f"\ s

5 ]
Il' H i 0 0
0, 0 0, 0
o fyli ||||I||||‘ il “" |} T I TN 0T IS VK 0 N 0 BRI 47 0 0N}
vl i 0 R R S iy
A b O O o &

50 100 150 200 250

50 100 150 200 250

p = 280 = number of
covariates

n = 100 = number of
responses

r = .45 = off-diagonal
correlation strength

a = 2 = diagonal variance

[Supp(B)| = 80

Lasso

- O =2 N W
6o 0 O
:’ S, 3:3

50 100 150 200 250
CRL-esti

- O =N W

50 100 150 200 250



GTV in climate tforecasting

 We have 75 years of observational
data

 We also have physical models we
can use to generate simulated
data:

e Large Ensemble Community
Project (LENS)

* 40 independent 75-year
simulations of SSTs and
precipitation

 How can we best leverage this?

https://www.esrl.noaa.gov/psd/data/20thC_Rean/

Efi Foufoula-
Georgiou, UCI

Jim Randerson,
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Out-Sample Performance of GTV and of different Methods of Regularization
EEm Lasso B Fused Lasso mmm GTV (Obs) mmm GTV (CESM-LENS)
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Out-Sample Performance of GTV and of known teleconnections
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Average

Region




arXiv:1803.07658 [pdf, other] statML

Graph-based regularization for regression problems with highly-correlated designs
Authors: Yuan Li, Benjamin Mark, Garvesh Raskutti, Rebecca Willett



How do we leverage a combination of training

data and physical models??

training data
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~hysical models and training data

Training data can be limited in volume, expensive to
collect =& we may learn over-simplified predictors

Physical models can be inaccurate or biased = we may
end up with a biased predictor

It we think of machine learning as using training data to
search over a family of predictors, then physical models
help constrain the set of viable predictors

-undamental tradeoffs among volumes of training data,
manifestation of physical models, and risk minimization
oresent significant open challenges




Thank you!



