MILO VERMEULEN — 5-12-2019

CATCHING PHOTON HITS

BACKGROUND

, Invariant mass $m_{\pi}^{2}=2 E_{\gamma 1} E_{\gamma 2}\left(1-\cos \left(\theta_{\gamma 1 \gamma 2}\right)\right)$

- Relies on energy and angle reconstruction
- Needs good completeness and purity of showers

METHOD

, Draw 3D cone around primary shower of photon
, Offset cone at the shower start to catch stray hits

- Opening angle tunable, but set to 30° here

SAMPLE

, For now: single $2 \mathrm{GeV} п^{+}$events
, 1000 events to serve as example
, Official production runs coming!

SHOWER AND CONE COMPLETENESS

PRELIMINARY RESULTS

IMPROVEMENTS

, Different container objects possible

- Cone? Cylinder? Cone without point?
- Still based on shower object
> Direction and length might be off
- Combine with parent track
> Need to investigate spacepoint solver
- Other candidates for 3D hit information?

