Update on Proton Calorimetric Reconstruction

Heng-Ye Liao ProtoDUNE sim/reco meeting Dec 11, 2019

Track length Calculation in LArSoft

Parameter	Class Name & Operation
Ltrue	Sum of distance between neighboring MCTrajectory points
Llen	recob::Track()::Length()
Lrange	anab::Calorimetry::Range()
Lpitch	Sum over anab::Calorimetry::TrkPitchVec()

*recob::Track does NOT have SCE correction anab::Calorimetry does have SCE correction

Track length Ratios for 1 GeV/c Stopping Protons [MC]

• Range calculation is a good choice!

	SCE OFF	SCE Calibration
L ^{len} /L ^{true}	0.9998 (0.0049)	0.8188 (0.0131) [No SCE correction on this item]
Lrange/Ltrue	0.9960 (0.0024)	0.9969 (0.0046)
Lpitch/Ltrue	0.9647 (0.0027)	0.9745 (0.0004)

*Each column, fitted mean (sigma) of the distribution

Introduction

- Study of proton energy reconstruction using Production 2
 For both data and MC (SCE ON)
- Reminder on proton energy reconstruction:

Definitions of Z & ΔL

- Z_i : Z-position of j-th hit
- ΔL_j : Distance between two consecutive hits (j, j-1)

Z V.S. ΔL (Stopping Protons)

	Data	MC
Cut to select dead wires	16.3 cm < 2 1.17 cm < 2	Z < 18.9 cm ∆L < 1.7 cm
# of missing hits	3981	481
# of total hits	528233	148799
Fraction	0.75 %	0.32 %

Prod. 2

Compensation of Energy Loss due to Dead Wires

• Compensation of energy loss because of the dead wires $\rightarrow KE^{caloFIX} = KE^{calo} + KE^{miss}$

KE^{calo} & **KE**^{caloFIX}

Data (after SCE calibration)

• The energy compensation is in consistent with our expectation of one noisy channel (ch 2169): ~2 MeV (~4 MeV/cm * 0.5 cm)

	Data (P	rod. 1)		Data	(Prod.2)	
	Mean [GeV]	FWHM [GeV]	∆E/E (sigma)		45 40	MC (Prod.2)
KE ^{range}	0.356	0.103	12.3 %		35	KE ^{range}
KE calo	0.361	0.122	14.4 %	0 0.2 0.4 0.6	0.8 25 Proton KE 20	
KE ^{beam}	0.398	0.102	10.9 %			
						400 600 800 range

Data (Prod. 2)

	Mean [GeV]	FWHM [GeV]	ΔE/E (sigma)		Mean [GeV]	FWHM [GeV]	ΔE/E (sigma)
KE ^{range}	0.401	0.119	12.6 %	KE ^{range}	0.416	0.099	10.1 %
KE ^{calo}	0.365	0.129	15.1 %	KE calo	0.388	0.097	10.7 %
KE ^{caloFIX}	0.367	0.129	14.9 %	KE ^{caloFIX}	0.389	0.097	10.6 %
KE ^{beam}	0.435	0.118	11.5 %	KE ^{beam}	0.434	0.104	10.2 %

MC (Prod. 2)

Proton KE

1000

	Data (Prod. 1)					
	Mean FWHM ΔE/E [GeV] [GeV] (sigma)					
KE ^{range}	0.356	0.103	12.3 %			
KE ^{calo}	0.361	0.122	14.4 %			
KE ^{beam}	0.398	0.102	10.9 %			

- Prod. 1: No SCE calibration Prod. 2: With SCE calibration
- *KE*^{range}:
 - * Track length (Prod. 2>Prod. 1) \rightarrow KE^{range} (Prod. 2>Prod. 1)
 - * KE^{range} (data) < KE^{range} (MC)
 - \rightarrow Energy loss: data > MC
 - → SCE correction is not perfect for data

MC (Prod. 2)

	Mean [GeV]	FWHM [GeV]	ΔE/E (sigma)		Mean [GeV]	FWHM [GeV]	∆E/E (sigma)
KE ^{range}	0.401	0.119	12.6 %	KE ^{range}	0.416	0.099	10.1 %
KE ^{calo}	0.365	0.129	15.1 %	KE ^{calo}	0.388	0.097	10.7 %
KE ^{caloFIX}	0.367	0.129	14.9 %	KE ^{caloFIX}	0.389	0.097	10.6 %
KE ^{beam}	0.435	0.118	11.5 %	KE ^{beam}	0.434	0.104	10.2 %

DUNE

Data (Prod. 2)

Data (Prod. 1)

	Mean [GeV]	FWHM [GeV]	ΔE/E (sigma)
KE ^{range}	0.356	0.103	12.3 %
KE calo	0.361	0.122	14.4 %
KE ^{beam}	0.398	0.102	10.9 %

• KE^{calo}:

Less sensitive to SCE calibration (sum over dE/dx*dx)

MC (Prod. 2)

Data (Prod. 2)

	Mean [GeV]	FWHM [GeV]	ΔE/E (sigma)		Mean [GeV]	FWHM [GeV]	ΔE/E (sigma)
KE ^{range}	0.401	0.119	12.6 %	KE ^{range}	0.416	0.099	10.1 %
KE ^{calo}	0.365	0.129	15.1 %	KE ^{calo}	0.388	0.097	10.7 %
KE caloFIX	0.367	0.129	14.9 %	KE ^{caloFIX}	0.389	0.097	10.6 %
KE ^{beam}	0.435	0.118	11.5 %	KE ^{beam}	0.434	0.104	10.2 %

	Data (Prod. 1)				
	MeanFWHMΔE/E[GeV][GeV](sigma)				
KE ^{range}	0.356	0.103	12.3 %		
KE ^{calo}	0.361	0.122	14.4 %		
KE ^{beam}	0.398	0.102	10.9 %		

- KE^{beam}:
 - Prod. 2: Re-calibration of beam momentum
 - Beam momentum of Prod. 2 close to 1 GeV/c [data & MC]
 - 9 % increase in KE^{beam} (Prod. 1 \rightarrow Prod. 2)

Data (Prod.	2)
-------------	----

MC (Prod.	2)
------	-------	----

	Mean [GeV]	FWHM [GeV]	ΔE/E (sigma)		Mean [GeV]	FWHM [GeV]	ΔE/E (sigma)
KE ^{range}	0.401	0.119	12.6 %	KE ^{range}	0.416	0.099	10.1 %
KE ^{calo}	0.365	0.129	15.1 %	KE ^{calo}	0.388	0.097	10.7 %
KE ^{caloFIX}	0.367	0.129	14.9 %	KE ^{caloFIX}	0.389	0.097	10.6 %
KE ^{beam}	0.435	0.118	11.5 %	KE ^{beam}	0.434	0.104	10.2 %

KE^{beam} – Data/MC [Prod. 2]

	Mean [GeV]	FWHM [GeV]	∆E/E (sigma)	Mean [GeV/c]	FWHM [GeV/c]	∆P/P (sigma)
Data	0.435	0.118	11.5 %	1.0117	0.17007	7.15 %
МС	0.434	0.104	10.2 %	1.0022	0.14458	6.14 %

Other Remarks on KE^{calo}

KE Ratios - Data/MC [Prod. 2]

	Data	MC
KE ^{caloFIX} /KE ^{range}	<mark>0.923</mark> (0.025)	<mark>0.940</mark> (0.030)
KE ^{caloFIX} /KE ^{beam}	<mark>0.861</mark> (0.046)	0.891 (0.017)
KE ^{caloFIX} /KE ^{ff}	0.907* (0.049)	<mark>0.934</mark> (0.032)
KE ^{range} /KE ^{beam}	<mark>0.924</mark> (0.045)	0.953 (0.012)
KE ^{range} /KE ^{ff}	0.975* (0.053)	<mark>0.988</mark> (0.013)

• KE^{calo} is lower than KE^{range}

15

- * Assume an average energy loss (21.72 MeV) in data (from beamline to TPC front face)
- KE^{ff}: Assume no extra material between FC and cryostat wall If we assume 1 cm Lar in between FC and cryostat, +~1.3 % in the KE^{range}/KE^{ff} column

Summary

- KE^{range} does not match between data and MC
 - \rightarrow Possible reasons:
 - (1) MC underestimates the upstream energy loss
 - (2) SCE correction is not perfect for data
 - [4 cm residual z offset]
- Bias between KE^{range} and KE^{calo}
 - \rightarrow Reason for this is under investigation
 - \rightarrow Ajib is working on the similar study using the stopping muons

Check on KE^{range}/KE^{beam}

Ih1d norm prim

• 2 % difference between track length/CSDA and KE^{range}/KE^{beam} Why? \rightarrow Non-linearity of CSDA v.s. KE in our region of interest

Proton KE Spectrum [Prod. 2]

Proton KE Ratios [Prod. 2]

DUNE

Zoom-in of Z v.s. ΔL

Sanity Check on Z^{true}

Lrange/Lpitch

DUNE

23