Stopgap spectrometer analysis plans

Chris Marshall Lawrence Berkeley National Laboratory 16 December, 2019

What is the stopgap spectrometer

- Baseline plan for DUNE ND is ArgonCube + MPD + SAND/3DST
- As a contingency in the US project, we want to have a backup plan: ArgonCube + muon spectrometer + empty KLOE
- Idea is that this would be the "Day 1" configuration, and it would be upgraded to full MPD+SAND/3DST at some point
- Muon spectrometer might be like MINOS or BabyMIND measures muon charge & momentum but no other physics program beyond that
- Implications for LBL analysis:
 - Somewhat worse resolution for LAr muons
 - Loss of HPgTPC samples
- Goals:

2

- Show that basic LAr-only ND+FD analysis is OK
- Show what physics would be missing from loss of HPgTPC samples

Reminder: TDR analysis ND

- LAr sample only no explicit HPgTPC events
- But uses HPgTPC for muon reconstruction
- Don't really need full geometry description, end-to-end simulation of muon spectrometer
- Just use HPgTPC as a stand-in, but worsen the assumed resolutions
 - No K0 sample for energy scale calibration
 - Poorer muon momentum resolution

Study details

- Repeat LAr ND +FD analysis with worsened ND resolutions
 - Tracker muon momentum resolution $3\% \rightarrow 20\%$
 - Increase resolution uncertainty from 2% → 5%
 - Increase energy scale uncertainty from 1% → 3%
- Reproduce Asimov sensitivities, parameter constraints

5

ND neutrino energy resolution

- Narrow peak is the neutrino energy residual from the TDR analysis
- Broad peak is what you get with the 20% muon momentum resolution

ND covariance matrix updated with worse energy scale

- ND detector
 uncertainty is
 implemented with
 - covariance matrix
- Remade covariance
 matrix with 3%
 energy scale
 uncertainty

Result: parameter constraints

8 Chris Marshall

Comment

- Parameter constraints get very slightly worse
- ND still has very high statistics, provides very tight constraints
- Still need to produce sensitivities, but this suggests the reduction will be minimal
- Conclusion: if we know the cross section model up to the assumed uncertainties, then the LAr + spectrometer measurement is sufficient

Major to do

- Demonstrate examples of model variations that we would not be able to resolve without HPgTPC
- See Seb's talk
- We would benefit from having one more concrete example

