

Neutron background from CuBe wires

Vitaly A. Kudryavtsev University of Sheffield, United Kingdom

Code

- W.B. Wilson, et al., SOURCES4A: a code for calculating (α,n) , spontaneous fission, and delayed neutron sources and spectra, Technical Report LA-13639-MS, Los Alamos, 1999;
- Modifications and additions, explained in Tomasello et al. NIMA, 595 (2008) 431.
- Validated by comparison of cross-sections with experimental data.
- Still quite a large uncertainty: up to 20-30% (differences between models and data sets) for most isotopes tested.

Results

- Here are the results for neutron yields for CuBe wires (1.9% Be by weight):
- Spontaneous fission of U-238:
 - o 1.353×10^{-11} neutrons/g/s/ppb (neutrons per gram per second per ppb of 238 U)
- (α,n) reactions:
 - $_{0}$ $^{238}\text{U} + ^{235}\text{U}$ chains in equilibrium: 2.75×10^{-10} n/g/s/ppb
 - Early 238 U (until but not including 226 Ra as usually assumed for a broken equilibrium; the break is not at 222 Rn) + full 235 U chains: 6.65×10^{-11} n/g/s/ppb
 - o Late 238 U (starting with 226 Ra and below): 2.09×10^{-10} n/g/s/ppb (normalised to the concentration of 238 U assumed to be in equilibrium)
 - o 232 Th: 9.13×10^{-11} n/g/s/ppb.
- Conversion:
 - o 238 U: 1 Bq/kg = 80.34 ppb
 - o 232Th: 1 Bq/kg = 246.3 ppb
- Early 238 U + full 235 U (including SF): 6.43×10^{-6} n/g/s/(Bq/kg) or n/decay.
- Late 238 U: 1.68×10^{-5} n/g/s/(Bq/kg) or n/decay.
- 232 Th: 2.25×10^{-5} n/g/s/(Bq/kg) or n/decay.