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Increasingly complex, large-scale infrastructures, such as particle accelerators and reactors, can 
benefit from AI algorithms that factor in real-time analysis, and these advanced computational 
tools may prove indispensable for optimizing factors such as performance and power 
consumption while at the same time maintaining optimal operations with little human expert 
intervention. Despite the importance of these complex, large-scale infrastructures, there only 
exist incomplete, limited AI models of them that are in vague resemblance to the real systems 
they are modeling [1]. This stems somewhat from a lack of intensive models-based systems 
engineering incorporating AI concepts from the birth of a project/concept, but more significantly 
from the abyss lying between the various communities, e.g. applied mathematics, 
designers/builders of complex systems (e.g. particle accelerator engineers, nuclear engineers, 
systems engineers), experts in artificial intelligence, experts in controls, and experts in high-
performance computing [2].  
 
Specifically, successful operation of particle accelerators requires as system that can successfully 
manage many interleaved control problems over a variety of operating modes, different sampling 
rates, and with multitude of constraints.  
 
Use of AI, specifically machine learning (ML) methodologies, is particularly well suited to help 
here. A few examples of this whose solution can be attempted by reinforcement learning (ML) 
techniques specifically include: 

§ Bringing complex accelerator systems into am optimal state as fast as possible (changing 
modes fast across a large number of parameters); 

§ Maintaining optimal conditions over long periods and specifically compensating for drift 
(changing many potentially couple and nonlinear variables by small increments, slowly, 
based on a trained ML); 

§ Optimizing a machine performance condition or important parameter (e.g., maximizing 
colliding beam luminosity, or to optimize for cooling) 

The third one is an example where neither measurements nor model are sufficient to find an 
optimal state for a given figure of merit. The situation is just too complex, so a heuristic is typically 
used as a starting point, modeling is done, and the machine experts do the final tuning by hand. 
This is kind of a holy grail but there are subsystems that follow the same paradigm (e.g., finding 
the optimal positions of 28 degrees of motional freedom in the SPS slow extraction septum 
positions to minimize beam loss, or finding the 250 or so correct collimator angles and positions 
in the Large Hardon Collider collimators for minimized backgrounds at both the ATLAS and CMS 
detectors). 
 
All of these “features” make particle accelerators highly complex systems that can greatly benefit 
from the application of Data Science/Artificial Intelligence/Machine Learning/High-Performance 
Computing (DS.AI/ML/HPC) with areas such as design optimization (e.g. through deep 
reinforcement learning [3]), computational decision support and to help with system resilience. 
Although there are activities being derived from another recent workshop and report, Workshop 



Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial 
Intelligence [4], these activities only scratch the surface of what is required for highly complex 
systems [5,6] such as particle accelerators. Moreover, the Advanced Scientific Computing 
Research (ASCR) Priority Research Directions (PRDs) and their recent calls for proposals and 
forthcoming research are focused on solving specific applied mathematical and HPC challenges. 
 
Several communities need a dedicated exploration space where they can experimentally test 
using DS/AI/ML for a variety of complex systems. Even reinforcement learning (RL) based 
controllers, for instance, are challenging to apply to accelerators as the entire environment 
cannot be fully modeled. During the last five years a variety of extensions and modifications to 
RL have been introduced that need to be explored in the field of particle accelerators. For 
example, in [7] the concept of Safe RL has been introduced. Extensive exploration into 
incorporating Long Short Term Memory networks (LSTMs) to incorporate “ideas” already learned 
as well as transfer learning from other similar systems is also required. This is an unexplored 
example of Deep Reinforcement Learning [8] combined with transfer learning [9]. In [10], an 
approach to use the framework of stochastic optimal control with path integrals is promising. 
 
Further yet, we need to also compare many networks and find ways of quantifying the 
uncertainty as applied to many complex systems, as the ones used, for example, in Bayesian 
frameworks combined with variational inference. Such additional research will help us 
understand many things, including how to best model complex systems, train and create 
emulators, and provide insight how to better monitor and control complex devices. 
 
There is still much research and development to do. 
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