
Hans Wenzel

16th December 2019

SimStep and SimTrajectory

The current SimEnergyDeposit

The current SimEnergy deposit:
● we are not really filling numPhotons and numElectrons in Geant4 anymore but in a separate

module (ISCalculationSeparate). So this doesn’t need to be stored here.
● trackID and pdgCode are repeated for every step on a trajectory
● two points for every step
● do we need double precison for time?
● do we need geo::Point_t for the persistent object (it’s just x,y,z)?

Can we save space and time? Make back tracking more efficient? Be independent of external
libraries?

Electron recombination from ISCalculationSeparate (Icarus)

Note: PhotonYield just proportional to dE/dx, not affected by
recombination

SimTrajectory as vector of SimSteps

len probably unnecessary?
Add pdg Code?
Proper handling of start point (need at least 2 SimSteps for trajectory)

Actually stored as:

SimTrajectory as vector of SimSteps(cont.)

G4Trajectory exists in Geant4 but:
● Track only trajectories in the active liquid Ar (filled in Sensitive Detector)
● No need for visualization controls

Implemented in lArTest (Geant4 stand alone) for testing and profiling

● new version of lArTest available in github.https://github.com/hanswenzel/lArTest

● added Root persistency

● the tracker writes out the trajectory of particles in the sensitive volume where the trajectory is a vector of SimSteps. It
looks like compared to SimEnergyDeposit that we are now using in lArSoft we save about 30% in storage and CPU.

● there are example executables (readhits) to demonstrate how to access the new objects in the root file

● For 1000 muons I get might be different in lArSoft:

Status

SimEnergyDeposit SimTrajectory

CPU (user) 16.183 12.742

Space 77Mb 60Mb

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

