Track vs. Shower Identification Improvements using ML in Pandora

Mousam Rai 6th Jan 2020 / DUNE FD Sim-Reco Meeting / Supervisor - Dr John Marshall

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Roadmap for this presentation

- Aim
- Variables
- Current and Proposed approach to track/shower ID in Pandora for DUNE FD
- Performance plots for proposed implementation
- Summary/Future Works

Aim

- Take particles reconstructed by Pandora and tag them as "track-like" or "shower-like"

Variables

- MicroBooNE variables $\rightarrow 8$ Topological and 2 Calorimetric variables
- Additional variables $\rightarrow 3$ Hierarchy variables

Distributions for selected variables

charge2 - Ratio of charge in the last 10% of the PFO and the mean charge in the collection plane

daughterParentNhitsRatio - 3D hits ratio between all downstream daughter pfos and parent pfo.

Current and Proposed approach to track/shower ID in Pandora

- Current Implementation
- Basic cut flow approach
- MicroBooNE \rightarrow Support Vector Machine approach
- Looking to implement similar ML approach for DUNE FD
- Proposed Implementation
- Boosted Decision Tree approach using SciKit-Learn which Pandora supports
- 13 variables
- Training $\rightarrow 50 \%$ numu and 50\% nue DUNE FD 1X2X6 MCC11 samples, completeness and purity $\geq 80 \%$, fiducial volume cuts
- Testing \rightarrow 50\% numu and 50\% nue DUNE FD 1X2X6 MCC11 samples, no completeness and purity cuts, no fiducial volume cuts

SKLearn BDT Distribution

Efficiency Numbers

Key $\quad \mathrm{T}=$ Tracks	S = Showers	TT = True Tracks		TS = True Showers				
T/S Characterisation Approach	TT as T (\#Pfos)	TT as S (\#Pfos)	Efficiency (T only)	TS as S (\#Pfos)	TS as T (\#Pfos)	Efficiency (S only)	$\begin{aligned} & \text { Total } \\ & \text { (\#Pfos) } \end{aligned}$	Efficiency (All Pfos)
Cut Based Approach	212900	100588	$\begin{aligned} & 0.679 \pm \\ & 0.0008 \end{aligned}$	149980	13774	$\begin{gathered} 0.916 \pm \\ 0.0007 \end{gathered}$	477242	$\begin{aligned} & 0.760 \pm \\ & 0.0006 \end{aligned}$
Root TMVA BDT	283724	29764	$\begin{gathered} 0.905 \pm \\ 0.0005 \end{gathered}$	128639	35115	$\begin{gathered} 0.786 \pm \\ 0.0010 \end{gathered}$	477242	$\begin{gathered} 0.864 \pm \\ 0.0005 \end{gathered}$
SKLearn BDT	290678	22810	$\begin{aligned} & 0.927 \pm \\ & 0.0005 \end{aligned}$	120746	43008	$\begin{gathered} 0.737 \pm \\ 0.0011 \end{gathered}$	477242	$\begin{gathered} 0.862 \pm \\ 0.0005 \end{gathered}$

Efficiency vs nHits

Summary/Future Works

- Cut Flow \rightarrow BDT approach (SKLearn)
- Significant Improvements
- Test on ProtoDUNE MC/data
- Use Andy Chappell's work
- Alan Turing Institute (mid-Jan 2020)
- Any questions or comments are deeply appreciated

BACK UP SLIDES

the university of warwick

Correlation Matrix for 13 variables

Correlation Matrix (signal)

laughterParentNhitsRatio	Linear correlation coefficients in \%													100
	-4	1	8			4	1			7	16	58	100	
nHilts3DDaughterTotal	-2	-3		4	-2	2	2		7	-1	55	100	58	80
nAllDaughter	5	-6	-9	2	-5	-3		-1	8	-9	100	55	16	60
charge2	-46	14	46	-4		10	1	3	-5	100	-9	-1	7	40
charge 1	1	14	4	16		15	12	8	100	-5	8	7		
pca2	-3	22	16	36	1	19	52	100	8	3	-1			20
pca1	-4	32	15	47	4	28	100	52	12	1		2	1	0
diffAngle	-9	31	22	27	7	100	28	19	15	10	-3	2	4	-20
vertexDistance	2			3	100	7	4	1			-5	-2		
rms		21	12	100	3	27	47	36	16	-4	2	4		-40
gap	-42	29	100	12		22	15	16	4	46	-9		8	-60
diff	-23	100	29	21		31	32	22	14	14	-6	-3	1	-80
length	100	-23	-42		2	-9	-4	-3	1	-46	5	-2	-4	
	length alif		$9{ }^{\text {a }}$	rms										

Definition of the variables

- length - 3D length of the PFO
- diff - Mean difference between the position of the hits and a straight line, divided by the straight line length
- gap - Average max gap distance, divided by straight line length
- rms - Average root mean square of linear sliding fit, divided by straight line length
- vertexDistance - Distance between the PFO vertex and the primary vertex
- diffAngle - Difference between the opening and closing angles calculated over 50\% of the pfo closest and furthest from the vertex.
- pca1 - Ratio between the second largest and the largest PCA eigenvalue
- pca2 - Ratio between the third largest and the largest PCA eigenvalue
- charge1 - Ratio between sigmaCharge ((charge - meanCharge) ${ }^{2}$) and the mean charge in collection plane.
- charge 2 - Ratio of charge in the last 10% of the PFO and the mean charge in the collection plane
- nAllDaughter - total number of all downstream daughter pfos
- nHits3DDaughterTotal - total number of 3D hits in all downstream daughter pfos
- daughterParentNhitsRatio - 3D hits ratio between all downstream daughter pfos and parent pfo.

T/S Distribution for Kinetic Energy

T/S Distribution for nHits

