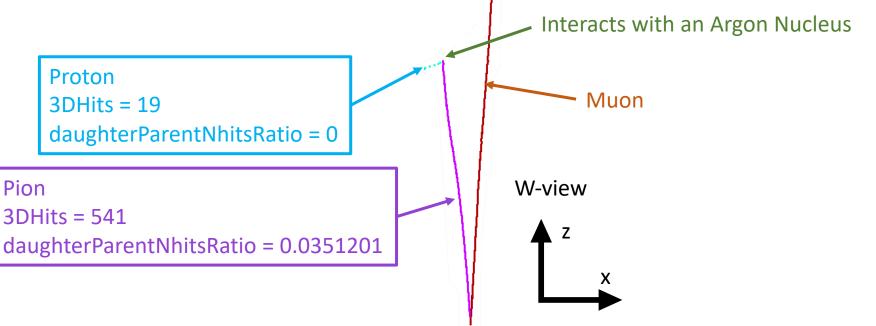
Track vs. Shower Identification Improvements using ML in Pandora

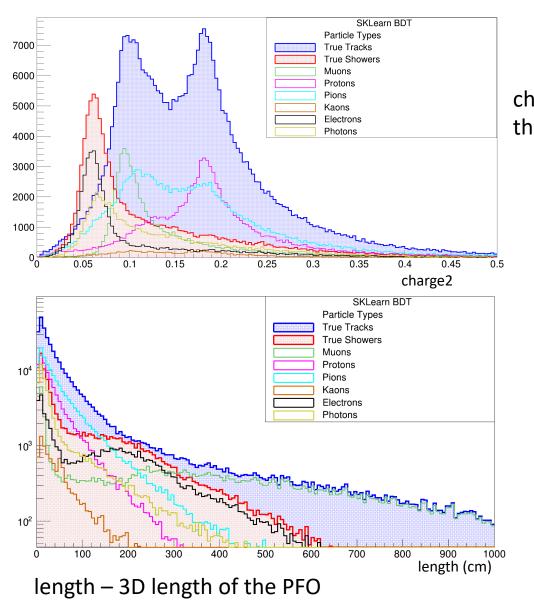
Mousam Rai 6th Jan 2020 / DUNE FD Sim-Reco Meeting / Supervisor – Dr John Marshall

Roadmap for this presentation

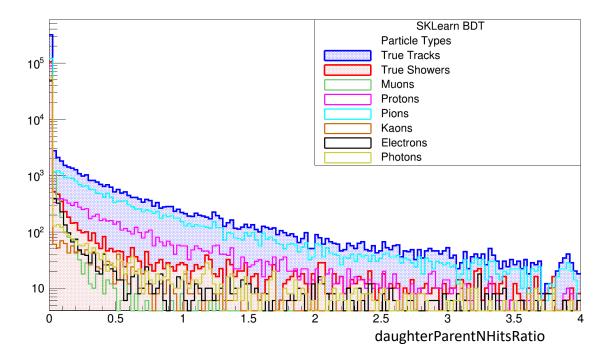
- Aim
- Variables
- Current and Proposed approach to track/shower ID in Pandora for DUNE FD
- Performance plots for proposed implementation
- Summary/Future Works


Aim

 Take particles reconstructed by Pandora and tag them as "track-like" or "shower-like"



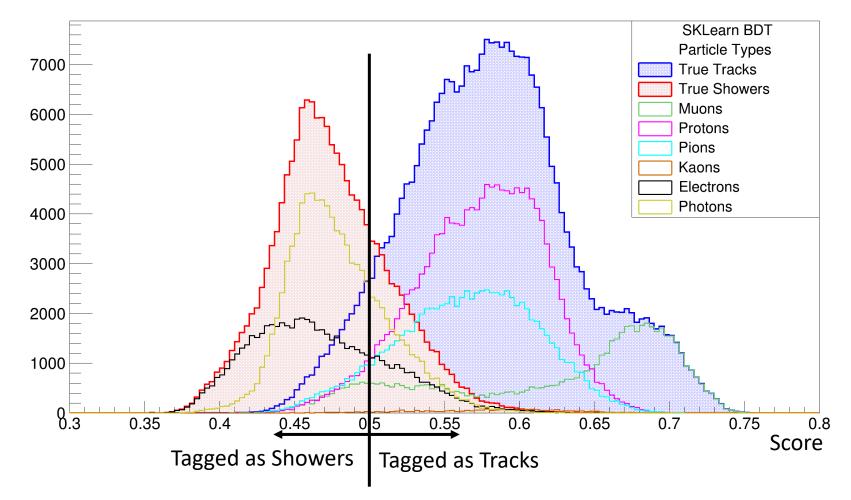
Variables


- MicroBooNE variables → 8 Topological and 2 Calorimetric variables
- Additional variables \rightarrow 3 Hierarchy variables

Distributions for selected variables

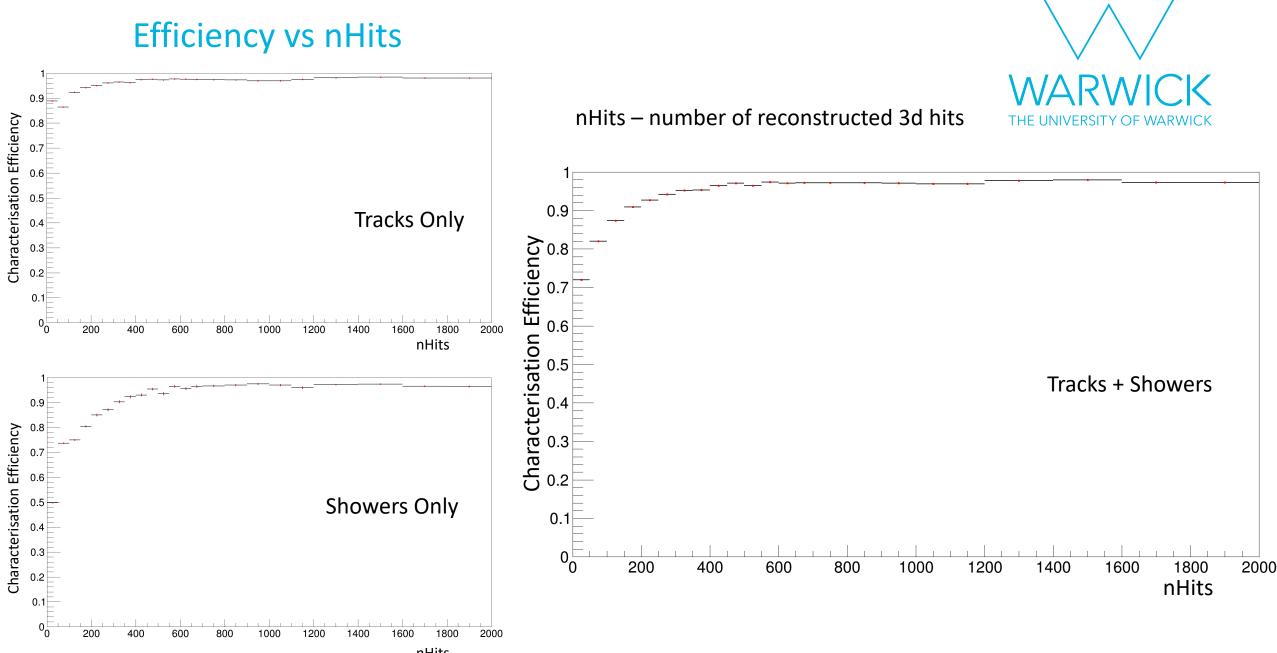
the UNIVERSITY OF WARWICK charge2 – Ratio of charge in the last 10% of the PFO and the mean charge in the collection plane

daughterParentNhitsRatio – 3D hits ratio between all downstream daughter pfos and parent pfo.


WARWICK

Current and Proposed approach to track/shower ID in Pandora

- Current Implementation
 - Basic cut flow approach
- MicroBooNE → Support Vector Machine approach
- Looking to implement similar ML approach for DUNE FD
- Proposed Implementation
 - Boosted Decision Tree approach using SciKit-Learn which Pandora supports
 - 13 variables
 - Training → 50% numu and 50% nue DUNE FD 1X2X6 MCC11 samples, completeness and purity ≥ 80%, fiducial volume cuts
 - Testing → 50% numu and 50% nue DUNE FD 1X2X6 MCC11 samples, no completeness and purity cuts, no fiducial volume cuts


SKLearn BDT Distribution

Efficiency Numbers

Key T = Tracks	S = Showe	rs TT = T	rue Tracks	TS = True Showers				
T/S Characterisation Approach	TT as T (#Pfos)	TT as S (#Pfos)	Efficiency (T only)	TS as S (#Pfos)	TS as T (#Pfos)	Efficiency (S only)	Total (#Pfos)	Efficiency (All Pfos)
Cut Based Approach	212900	100588	0.679 ± 0.0008	149980	13774	0.916 ± 0.0007	477242	0.760 ± 0.0006
Root TMVA BDT	283724	29764	0.905 ± 0.0005	128639	35115	0.786 ± 0.0010	477242	0.864 ± 0.0005
SKLearn BDT	290678	22810	0.927 ± 0.0005	120746	43008	0.737 ± 0.0011	477242	0.862 ± 0.0005

nHits

9

Summary/Future Works

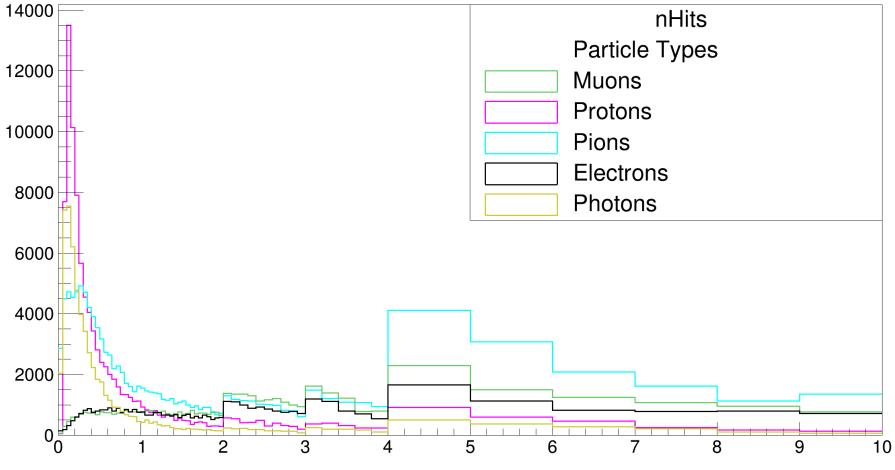
- Cut Flow \rightarrow BDT approach (SKLearn)
- Significant Improvements
- Test on ProtoDUNE MC/data
- Use Andy Chappell's work
- Alan Turing Institute (mid-Jan 2020)
- Any questions or comments are deeply appreciated

BACK UP SLIDES

Correlation Matrix for 13 variables

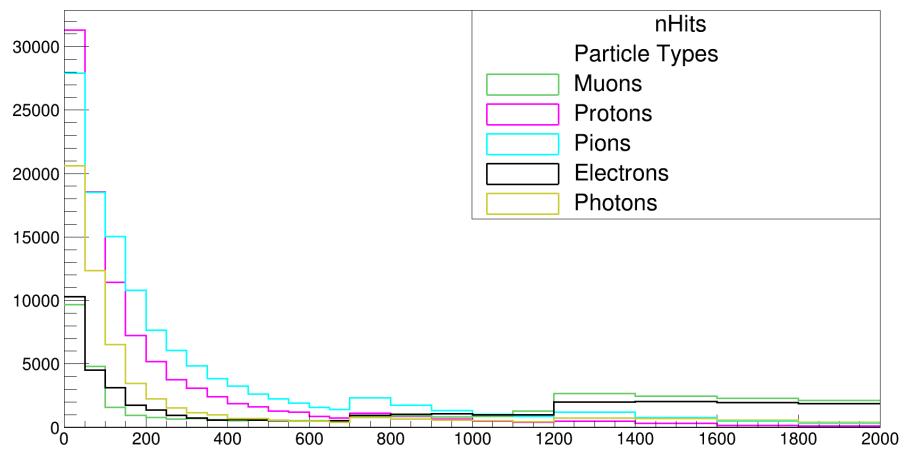
4			s in %	pefficients	elation co	inear corr	Li							
1	100	58	16	7			1	4			8	1	-4	laughterParentNhitsRatio
8	58	100	55	-1	7		2	2	-2	4		-3	-2	nHits3DDaughterTotal
- 6	16	55	100	-9	8	-1		-3	-5	2	-9	-6	5	nAllDaughter
2	7	-1	-9	100	-5	3	1	10		-4	46	14	-46	charge2
		7	8	-5	100	8	12	15		16	4	14	1	charge1
2			-1	3	8	100	52	19	1	36	16	22	-3	pca2
(1	2		1	12	52	100	28	4	47	15	32	-4	pca1
	4	2	-3	10	15	19	28	100	7	27	22	31	-9	diffAngle
		-2	-5			1	4	7	100	3			2	vertexDistance
		4	2	-4	16	36	47	27	3	100	12	21		rms
	8		-9	46	4	16	15	22		12	100	29	-42	gap
_	1	-3	-6	14	14	22	32	31		21	29	100	-23	diff
	-4	-2	5	-46	1	-3	-4	-9	2		-42	-23	100	length
	-4 ^{daughter} D DaughterT							-9 ^{diffAr} Distance		rm _s	-42 9ap		100 ^{Ien} gti	length

Correlation Matrix (signal)



Definition of the variables

- length 3D length of the PFO
- diff Mean difference between the position of the hits and a straight line, divided by the straight line length
- gap Average max gap distance, divided by straight line length
- rms Average root mean square of linear sliding fit, divided by straight line length
- vertexDistance Distance between the PFO vertex and the primary vertex
- diffAngle Difference between the opening and closing angles calculated over 50% of the pfo closest and furthest from the vertex.
- pca1 Ratio between the second largest and the largest PCA eigenvalue
- pca2 Ratio between the third largest and the largest PCA eigenvalue
- charge1 Ratio between sigmaCharge ($(charge meanCharge)^2$) and the mean charge in collection plane.
- charge2 Ratio of charge in the last 10% of the PFO and the mean charge in the collection plane
- nAllDaughter total number of all downstream daughter pfos
- nHits3DDaughterTotal total number of 3D hits in all downstream daughter pfos
- daughterParentNhitsRatio 3D hits ratio between all downstream daughter pfos and parent pfo.


T/S Distribution for Kinetic Energy

Kinetic Energy (GeV)

T/S Distribution for nHits

