Deep-Learning Signal Processing with Geometry Information

Haiwang Yu (BNL)

for the Wire-Cell team

ProtoDUNE Sim/Reco Meeting

Jan. 8, 2020

Multi-Plane (3-Plane Matching) Signal Processing – MP-SP

1, make time slices

Proposed by Xin Qian - inspired by 'Imaging'

Fit for cases where signal initially observed but got removed as LF noise

Fast projection realized using "RayGrid" tools developed by Brett:

https://github.com/WireCell/wire-cell-

docs/blob/master/presentations/updates/20190321/latexmk-out/img.pdf

2, Matching active (with ROI) wires in multiple planes

active wire in the time-slice : ref. plane, target plane

in-active wire in the time-slice

3, mark matched ROIs as 'protected'

MP-SP Tested on ProtoDUNE Data

https://indico.fnal.gov/event/22240/contribution/6

Previous report in ProtoDUNE Sim/Reco Meeting

Work from Hongzhao Yu (SYSU)

Deep Learning "ROI Refinement" with Geometry Info.

DL-MP-SP: ROI Finding as Image Segmentation

- ROI finding as image segmentation Idea emerged from discussions with Xin, Chao, Brett, Kazu, etc.
- Candidate Deep-Learning Model UNet

UNet: auto encoder-decoder + skip connections

- Output is sparse connected components
- Input and output are similar at leading order

Forked a Pytorch implementation of the original U-Net

• https://github.com/HaiwangYu/Pytorch-UNet

Data Preparation

- Initialized HDF5 based IO in Wire-Cell:
 - https://github.com/WireCell/wire-cell-toolkit/tree/master/hio

Used these as input of DL model

ML Input from ProtoDUNE data

`tight_lf`, `loose_lf`: 2D decon. with tight/loose low frequency filter

`MP2`, `MP3`: multi-plane 2 plane/3plane

- 2 plane: for a given tick and wire check if any wires pairs from other 2 planes crossing many ghosts
- 3plane: for a given tick and wire check if any wire trios from all 3 plane crossing – much fewer ghosts

Current best results are given by `loose_lf`, `mp2_roi` and `mp3_roi`. More experiments ongoing.

- loose_lf: decon. charge info
- MP2: low-purity high-efficiency info
- MP3: high-purity low-efficiency info

ML Input and label from ProtoDUNE simulation

Current noise simulation was based on real detector noise spectrum and random walk in complex frequency domain

https://www.phy.bnl.gov/~diwan/talks/peda gogy/diwan-random-noise-basics-2.pdf

Truth labelling was done by rasterization of charge depos – 2D gaussian response

Signal Simulation Validation

From Wenqiang Gu's talk:

https://indico.bnl.gov/event/7024/contributions/32749/

Average waveform: data vs. MC

U plane

MC scaling: 1.6

Tick: [570, 970]

Ch: [8050, 8200]

V plane

MC scaling: 1.6

Tick: [570, 970]

Ch: [8950, 9200]

W plane

MC scaling: 1.6

Tick: [570, 970]

Ch: [9500, 9750]

Training

Platform: I9-9900K, 32 GB memory, Nvidia GTX 2080 Ti 11GB, Samsung 970 500GB NVMe SSD 500 APA samples using cosmic generator

	Unit Time	Total Time
Generator	2 sec/event	0.3 hour/500events
G4	23 sec/event	3.2 hour/500events
detector response, truth tagging and waveform preprocessing	68 sec/APA	9.4 hour/500 APA
Network training	6 min/epoch (1 epoch: 1 iteration of 500 APA sample)	5 hour/50epoch
Sum		17.9 hour

DL-MP-SP Speed Estimation

Current ROI Refinement: 1.3 sec/APA

DL Model Prediction:

CPU-ST: 18 sec/APA

CPU-MT: 8 sec/APA

GPU-CPU-ST: 2 sec/APA

ST: Single Thread

MT: Multi-Thread

Current Network using Pytorch is NOT very fast on CPU

Other Neural Network? TensorFlow?

DL Model Prediction for V plane for 10 APAs

Summary

We are trying to improve LArTPC signal processing by introducing geometry information and Deep Learning

Current DL model trained with relatively small simulation sample already showed promising results on ProtoDUNE-SP real data.

More developments and evaluations are on going

Availability in Wire-Cell toolkit:

- MP-SP: ready to use in next release of Wire-Cell
- DL-MP-SP: integration with Wire-Cell ongoing